#### Filter Results:

#### Publication Year

1999

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Method

#### Organism

Learn More

We peruse various anomalous physical responses of the cubic (ferromagnetic SrRuO3 and paramagnetic CaRuO3) ruthenates, such as fractional power-law conductivity, anomalous Raman line shapes, and Hall currents. We show how these exciting power-law observations are naturally described within a new, local (orbital) non-Fermi-liquid state arising from strong,… (More)

Saturn rings are most beautiful and dynamic places in the solar system, consisting of ice particles in a constant battle between the gravitational forces of Saturn and its many moons. Fan, spiral, propellers, moonlets and streamer-channels observed by CASSINI in the F-ring have been attributed to encounters by Prometheus on the F ring, with investigations… (More)

- A Pototsky, F Marchesoni, F V Kusmartsev, P Hänggi, S E Savel 'ev
- 2012

Relativistic Brownian motion can be inexpensively demonstrated on a graphene chip. The interplay of stochastic and relativistic dynamics, governing the transport of charge carrier in graphene, induces noise-controlled effects such as (i) a stochastic effective mass, detectable as a suppression of the particle mobility with increasing the temperature; (ii)… (More)

- M B Sobnack, F V Kusmartsev
- 2008

We propose a new boundary–driven phase transition associated with vor-tex nucleation in mesoscopic superconductors (of size of the order of, or larger than, the penetration depth). We derive the rescaling equations and we show that boundary effects associated with vortex nucleation lowers the conventional transition temperature in mesoscopic superconductors… (More)

We predict a new class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line and have an analogy with shear waves in solid mechanics. Their shapes can have an arbitrary profile, which is retained when propagating. We derive a universal… (More)

- K I Kugel, A L Rakhmanov, A O Sboychakov, F V Kusmartsev, Nicola Poccia, Antonio Bianconi
- 2008

A two-band model is used to study the phase separation in systems with different kinds of strongly correlated charge carrier, with a special emphasis on cuprate superconductors near optimum doping. We show that such a system can decompose into two metallic-like phases with more and less localized carriers. This phase separation is controlled by the energy… (More)

We develop a perturbation theory that describes bound states of solitons localized in a confined area. External forces and influence of inhomogeneities are taken into account as perturbations to exact solutions of the sine-Gordon equation. We have investigated two special cases of fluxon trapped by a microresistor and decay of a breather under dissipation.… (More)

Quantum computation using artificial-atoms, such as novel superconducting circuits, can be sensitively controlled by external electromagnetic fields. These fields and the self-fields attributable to the coupled artificial-atoms influence the amount of quantum correlation in the system. However, control elements that can operate without complete destruction… (More)

- K Jin, G He, X Zhang, S Maruyama, S Yasui, R Suchoski +8 others
- Nature communications
- 2015

LiTi2O4 is a unique compound in that it is the only known spinel oxide superconductor. The lack of high quality single crystals has thus far prevented systematic investigations of its transport properties. Here we report a careful study of transport and tunnelling spectroscopy in epitaxial LiTi2O4 thin films. An unusual magnetoresistance is observed which… (More)

- N. N. Kovaleva, K. I. Kugel, A. V. Bazhenov, T. N. Fursova, W. Löser, Y. Xu +2 others
- Scientific reports
- 2012

Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal,… (More)