Feodor V. Kusmartsev

Learn More
We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape(More)
The results of numerical modeling of sonic crystals with resonant array elements are reported. The investigated resonant elements include plain slotted cylinders as well as their various combinations, in particular, Russian doll or Matryoshka configurations. The acoustic band structure and transmission characteristics of such systems have been computed with(More)
The discovery of a flat two-dimensional crystal known as graphene has contradicted Landau-Peierls-Mermin-Wagner arguments that there is no stable flat form of such crystals. Here, we show that the "flat" shape of graphene arises due to a microscopic buckling at the smallest possible interatomic scale. We show that the graphene, silicene, and other(More)
D. R. Gulevich,1,2 F. V. Kusmartsev,1 Sergey Savel’ev,1,2 V. A. Yampol’skii,2,3 and Franco Nori2,4 1Physics Department, Loughborough University, Leicestershire LE11 3TU, United Kingdom 2Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan 3Usikov Institute for Radiophysics and Electronics,(More)
We study a resistively shunted semiconductor superlattice subject to a highfrequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is(More)
For the first time, new epitaxial graphene nano-structures resembling charged 'bubbles' and 'domes' are reported. A strong influence, arising from the change in morphology, on the graphene layer's electronic, mechanical and optical properties has been shown. The morphological properties of these structures have been studied with atomic force microscopy(More)
Saturn rings are most beautiful and dynamic places in the solar system, consisting of ice particles in a constant battle between the gravitational forces of Saturn and its many moons. Fan, spiral, propellers, moonlets and streamer-channels observed by CASSINI in the F-ring have been attributed to encounters by Prometheus on the F ring, with investigations(More)
The availability of controllable macroscopic devices, which maintain quantum coherence over relatively long time intervals, for the first time allows an experimental realization of many effects previously considered only as gedanken experiments, such as the operation of quantum heat engines. The theoretical efficiency η of quantum heat engines is restricted(More)
The current-voltage characteristics of a new range of devices built around Weyl semimetals has been predicted using the Landauer formalism. The potential step and barrier have been reconsidered for three-dimensional Weyl semimetals, with analogies to the two-dimensional material graphene and to optics. With the use of our results we also show how a Veselago(More)
Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal,(More)