Fengling Liu

Learn More
The potent new antiviral inhibitor TMC-114 (UIC-94017) of HIV-1 protease (PR) has been studied with three PR variants containing single mutations D30N, I50V, and L90M, which provide resistance to the major clinical inhibitors. The inhibition constants (K(i)) of TMC-114 for mutants PR(D30N), PR(I50V), and PR(L90M) were 30-, 9-, and 0.14-fold, respectively,(More)
HIV-1 (human immunodeficiency virus type 1) protease (PR) and its mutants are important antiviral drug targets. The PR flap region is critical for binding substrates or inhibitors and catalytic activity. Hence, mutations of flap residues frequently contribute to reduced susceptibility to PR inhibitors in drug-resistant HIV. Structural and kinetic analyses(More)
BACKGROUND/AIMS Gastric cancer (GC) is the fourth most common cancer and the second most common cause of cancer deaths worldwide. Endoscopic examination is the most used method to detect the GC nowadays, whereas this method is expensive and invasive. MicroRNAs (miRNAs) are a group of recently discovered small non-protein-coding RNAs. They regulate the(More)
The crystal structures, dimer stabilities, and kinetics have been analyzed for wild-type human immunodeficiency virus type 1 (HIV-1) protease (PR) and resistant mutants PR(L24I), PR(I50V), and PR(G73S) to gain insight into the molecular basis of drug resistance. The mutations lie in different structural regions. Mutation I50V alters a residue in the(More)
TMC114 (darunavir) is a promising clinical inhibitor of HIV-1 protease (PR) for treatment of drug resistant HIV/AIDS. We report the ultra-high 0.84 A resolution crystal structure of the TMC114 complex with PR containing the drug-resistant mutation V32I (PR(V32I)), and the 1.22 A resolution structure of a complex with PR(M46L). These structures show TMC114(More)
Mutations in HIV-1 protease (PR) that produce resistance to antiviral PR inhibitors are a major problem in AIDS therapy. The mutation F53L arising from antiretroviral therapy was introduced into the flexible flap region of the wild-type PR to study its effect and potential role in developing drug resistance. Compared to wild-type PR, PR(F53L) showed lower(More)
HIV-1 protease (PR) is the target for several important antiviral drugs used in AIDS therapy. The drugs bind inside the active site cavity of PR where normally the viral polyprotein substrate is bound and hydrolyzed. We report two high-resolution crystal structures of wild-type PR (PRWT) and the multi-drug-resistant variant with the I54V mutation (PRI54V)(More)
All aspartic proteases, including retroviral proteases, share the triplet DTG critical for the active site geometry and catalytic function. These residues interact closely in the active, dimeric structure of HIV-1 protease (PR). We have systematically assessed the effect of the D25N mutation on the structure and stability of the mature PR monomer and dimer.(More)
HIV-1 protease (PR) and two drug-resistant variants--PR with the V82A mutation (PR(V82A)) and PR with the I84V mutation (PR(I84V))--were studied using reduced peptide analogs of five natural cleavage sites (CA-p2, p2-NC, p6pol-PR, p1-p6 and NC-p1) to understand the structural and kinetic changes. The common drug-resistant mutations V82A and I84V alter(More)
One of the important mediators of Epithelial to mesenchymal transition (EMT) is the Snail1 protein (encoded by SNAI1) which facilitates transition to mesenchymal state by transcriptionally repressing the epithelial cell marker E-cadherin. Given its central role in EMT and tumor metastasis, the cell has evolved multiple levels of regulatory mechanism at(More)
  • 1