Fenglin Peng

  • Citations Per Year
Learn More
We report high performance liquid crystal displays (LCDs), including fringe field switching (p-FFS) and in-plane switching (p-IPS), with a small average dielectric constant (ε) but positive dielectric anisotropy material. Our low ε based p-FFS and p-IPS LCDs offer several attractive properties, such as high transmittance, low operation voltage, fast(More)
Using our new negative Δ LC material in a fringing field switching (n-FFS) cell, we demonstrated superior performances to conventional positive Δ FFS (p-FFS) LCD in transmittance, viewing angle, cell gap sensitivity, gamma curve, while keeping a comparable operation voltage and response time. Therefore, n-FFS has potential to replace p-FFS for(More)
We report five ultra-low viscosity nematic liquid crystal mixtures with birefringence around 0.1, dielectric anisotropy in the range of 3 to 6, and clearing temperature about 80°C. A big advantage of these low viscosity mixtures is low activation energy, which significantly suppresses the rising rate of viscosity at low temperatures. Using our mixture M3 as(More)
Articles you may be interested in Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer Behavior of ion affecting image sticking on liquid crystal displays under application of direct current voltage Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation(More)
The dynamic response of a polymer-stabilized blue phase liquid crystal (BPLC) is comprised of two distinct processes: Kerr effect-induced local reorientation and electrostriction-induced lattice distortion. A double exponential rise/decay model is proposed to analyze the underlying physical mechanisms. If the electric field is below a critical field (Ec),(More)
We review recent progress in the development of high birefringence (Δn ≥ 0.12) negative dielectric anisotropy (Δε < 0) liquid crystals (LCs) for direct-view and projection displays. For mobile displays, our UCF-N2 (low viscosity, negative Δε, high Δn) based homogeneous alignment fringe-field switching (called n-FFS) mode exhibits superior performance to(More)
We report a wide nematic range and low absorption loss chlorinated liquid crystal mixture, designated as IR-M2, for mid-wave infrared applications. IR-M2 is quite transparent in the 3.8-5.0 μm window while keeping a high birefringence (Δn~0.194) in the infrared region and a modest dielectric anisotropy. For long-wave infrared applications, we propose(More)
We report the low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals (BPLCs) comprising of a large dielectric anisotropy nematic host. Debye dielectric relaxation sets a practical limit even when the device operation temperature is still within the blue phase range. To explain these phenomena, we propose a model to(More)
We propose a new A-film-enhanced fringe field switching (A-FFS) liquid crystal display whose required dΔn value is only λ/4, which is one-half of a conventional FFS. Fast response time can be achieved by either decreasing the cell gap (d) or choosing a low birefringence (Δn) and low-viscosity liquid crystal. The effect of dΔn mismatch between A-film and FFS(More)