Fengliang Xu

Learn More
[1] The planned 2003 Mars Exploration Rover (MER) Mission and follow-on surface activities associated with landed missions will focus on long distance roving and sample return, which require detailed knowledge of vehicle locations in both local and global reference systems. In this paper we argue that this rover localization should be known to within 0.1%(More)
In the 2003 Mars Exploration Rover (MER) mission, the twin rovers, Spirit and Opportunity, carry identical Athena instrument payloads and engineering cameras for exploration of the Gusev Crater and Meridiani Planum landing sites. This paper presents the photogrammetric processing techniques for high accuracy topographic mapping and rover localization at the(More)
High-precision topographic information from all available data is crucial to many landing site geological and engineering applications. At the same time, precise navigation and localization of the rover as it traverses the Martian surface is important both for its safety and for the achievement of its engineering and scientific objectives. In this paper, we(More)
This paper presents the technology of mapping and rover localization at the two landing sites, Gusev and Meridiani, for the 2003 Mars Exploration Rover (MER) mission. The rover localization and landing site mapping technology is based on the incremental bundle adjustment of an image network formed by Pancam, and Navcam stereo images. The developed(More)
In Mars exploration missions, high-precision landing-site topographic information is crucial for engineering operations and the achievement of scientific goals. Detailed topographic information of landing sites is usually provided by ground panoramic images acquired by lander or rover stereo cameras. This technology was employed for the 1997 Mars Pathfinder(More)