Fenghe Liang

Learn More
Chronic focal epilepsy is associated with synaptic plasticity and growth of new connections. Brain-derived neurotrophic factor (BDNF) is associated with each of these processes in normal brain and shows acute up-regulation in models of generalized epilepsy. Here, using an experimental model of focal epilepsy, we show persistent up-regulation of BDNF mRNA,(More)
Long-train tetanic stimulation of the cerebral cortex induces long-term changes in the excitability of cortical neurons, while short-train electrical stimulation does not. In the present study, we show that both forms of stimulation when applied to rat motor cortex for 4 h enhance c-fos expression, but only tetanic stimulation, when imposed upon short-train(More)
Excitatory post-synaptic currents in the CNS are primarily mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptors in response to glutamate. Internalization of cell-surface receptors has been shown to be one mechanism by which to control receptor function. To test for agonist control of AMPA receptor plasma membrane expression(More)
Altered gene expression for a number of molecules has been suggested as one of the underlying mechanisms of epileptogenesis. Changes in expression of the immediate early genes, zif268 and c-fos, were investigated in chronic focal epilepsy induced by tetanus toxin (TT, 20-35 ng) injected in the rat motor cortex. Most rats injected with TT and perfused on(More)
Current models of the lateral K+ recycling pathway in the mammalian cochlea include two multicellular transport networks separated from one another by three interstitial gaps. The first gap is between outer hair cells and Deiters cells, the second is between outer sulcus cells and type II spiral ligament fibrocytes and the third is between intermediate and(More)
Voltage-gated chloride channels (ClCs) are important mediators of cellular ion homeostasis and volume regulation. In an earlier study, we used immunohistochemical, Western blot, and reverse transcriptase PCR (RT-PCR) approaches to identify ClC-K variants in types II, IV, and V fibrocytes of the rodent spiral ligament. We have now confirmed the expression of(More)
Evidence is accruing that spiral ligament fibrocytes (SLFs) play an important role in cochlear K(+) homeostasis, but little direct physiological data is available to support this concept. Here we report the presence and characterization of a voltage- and Ca(2+)-dependent big-conductance K (BK) channel in type I SLFs cultured from the gerbil cochlea. A(More)
The role of calcium- and voltage-dependent big conductance potassium channels in regulating apoptosis was investigated in cultured type I spiral ligament fibrocytes. Incubation of type I spiral ligament fibrocytes derived from gerbil cochlea with cisplatin induced dose- and time-dependent apoptosis as demonstrated by annexin V conjugated to fluorescein(More)
Expression of the cellular immediate-early gene, zif268, was investigated using immunocytochemical methods in cervical spinal cord of neonatal and adult rats. The postnatal expression of zif268 follows a specific temporal and spatial sequence in the spinal dorsal horn. Neurons immunoreactive for Zif268 protein were not present in cervical spinal cord before(More)
Intracellular free Ca2+ levels are critical to the activity of BK channels in inner ear type I spiral ligament fibrocytes. However, the mechanisms for regulating intracellular Ca2+ levels in these cells are currently poorly understood. Using patch-clamp technique, we have identified a voltage-dependent L-type Ca2+ channel in type I spiral ligament(More)