Fengfeng Zhou

Learn More
Systematic dissection of the sumoylation proteome is emerging as an appealing but challenging research topic because of the significant roles sumoylation plays in cellular dynamics and plasticity. Although several proteome-scale analyzes have been performed to delineate potential sumoylatable proteins, the bona fide sumoylation sites still remain to be(More)
Protein phosphorylation plays a fundamental role in most of the cellular regulatory pathways. Experimental identification of protein kinases' (PKs) substrates with their phosphorylation sites is labor-intensive and often limited by the availability and optimization of enzymatic reactions. Recently, large-scale analysis of the phosphoproteome by the mass(More)
Transposable elements (TE) are functionally important genetic elements that can move within a genome. Miniature inverted-repeat transposable elements (MITEs) constitute a class of transposable elements that are usually small in size and have high numbers of conserved copies. Identifying all the MITEs in a genome could provide new insights about gene(More)
Populus trichocarpa is the first tree genome to be completed, and its whole genome is currently being assembled. No functional annotation about the repetitive elements in the Populus trichocarpa genome is currently available. We predicted 9,623 repetitive elements in the Populus trichocarpa genome, and assigned functions to 3,075 of them (31.95%). The 9,623(More)
Miniature inverted-repeat transposable elements (MITEs) were first identified in plants and exerted extensive proliferations throughout eukaryotic and archaeal genomes. But very few MITEs have been characterized in bacteria. We identified a novel MITE, called Nezha, in cyanobacteria Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120. Nezha, like most(More)
Each genome has a stable distribution of the combined frequency for each k-mer and its reverse complement measured in sequence fragments as short as 1000 bps across the whole genome, for 1<k<6. The collection of these k-mer frequency distributions is unique to each genome and termed the genome's barcode. We found that for each genome, the majority of its(More)
UNLABELLED Palmitoylation is an important post-translational lipid modification of proteins. Unlike prenylation and myristoylation, palmitoylation is a reversible covalent modification, allowing for dynamic regulation of multiple complex cellular systems. However, in vivo or in vitro identification of palmitoylation sites is usually time-consuming and(More)
Protein sumoylation is an important reversible post-translational modification of proteins in the nucleus, and it orchestrates a variety of the cellular processes. Genome-wide analysis of functional abundance and distribution of Small Ubiquitin-related MOdifier (SUMO) substrates may shed a light on how sumoylation is involved in nuclear biological processes(More)
MOTIVATION The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with known homologues. RESULTS We present a novel de novo(More)
Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with(More)