Fengchang Zhu

Learn More
JAG1, the gene for the Jagged-1 ligand (Jag1) in the Notch signaling pathway, is variably mutated in Alagille Syndrome (ALGS). ALGS patients have skeletal defects, and additionally JAG1 has been shown to be associated with low bone mass through genome-wide association studies. Plating human osteoblast precursors (human mesenchymal stem cells-hMSCs) on Jag1(More)
The transcription factor osterix (Sp7) is essential for osteoblastogenesis and bone formation in mice. Genome wide association studies have demonstrated that osterix is associated with bone mineral density in humans; however, the molecular significance of osterix in human osteoblast differentiation is poorly described. In this study we have characterized(More)
Genome-wide association studies (GWAS) have demonstrated that genetic variation at the MADS box transcription enhancer factor 2, polypeptide C (MEF2C) locus is robustly associated with bone mineral density, primarily at the femoral neck. MEF2C is a transcription factor known to operate via the Wnt signaling pathway. Our hypothesis was that MEF2C regulates(More)
Treatment of nonunion fractures is a significant problem. Common therapeutics, including autologous bone grafts and bone morphogenetic proteins, show well-established limitations. Therefore, a need persists for the identification of novel clinical therapies to promote healing. The Notch signaling pathway regulates bone development. Clinically,(More)
Cellular signal transduction pathways transduce input signals to produce corresponding output effects, ensuring correct response to extracellular signals. Manipulation of components in signaling pathways will alter correlation of input signals to output effects. Here we report that by reconstructing the components in mitogenic and apoptotic signaling(More)
  • 1