Learn More
Parallel scientific applications require high-performance I/O support from underlying file systems. A comprehensive understanding of the expected workload is therefore essential for the design of high-performance parallel file systems. We re-examine the workload characteristics in parallel computing environments in the light of recent technology advances(More)
Thioamide drugs, ethionamide (ETH) and prothionamide (PTH), are clinically effective in the treatment of Mycobacterium tuberculosis, M. leprae, and M. avium complex infections. Although generally considered second-line drugs for tuberculosis, their use has increased considerably as the number of multidrug resistant and extensively drug resistant(More)
Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivatives was developed. Two groups of derivatives with(More)
Ovarian cancer is a leading cause of cancer deaths among women. Effective targets to treat advanced epithelial ovarian cancer (EOC) and biomarkers to predict treatment response are still lacking because of the complexity of pathways involved in ovarian cancer progression. Here we show that miR-181a promotes TGF-β-mediated epithelial-to-mesenchymal(More)
Establishment of efficient genome editing tools is essential for fundamental research, genetic engineering, and gene therapy. Successful construction and application of transcription activator-like effector nucleases (TALENs) in several organisms herald an exciting new era for genome editing. We describe the production of two active TALENs and their(More)
The object-based storage model, in which files are made up of one or more data objects stored on self-contained Object-Based Storage Devices (OSDs), is emerging as an architecture for distributed storage systems. The workload presented to the OSDs will be quite different from that of generalpurpose file systems, yet many distributed file systems employ(More)
The ability of proteins to locate specific targets among a vast excess of nonspecific DNA is a fundamental theme in biology. Basic principles governing these search mechanisms remain poorly understood, and no study has provided direct visualization of single proteins searching for and engaging target sites. Here we use the postreplicative mismatch repair(More)
Isoniazid is one of the most effective antituberculosis drugs, yet its precise mechanism of action is still controversial. Using specialized linkage transduction, a single point mutation allele (S94A) within the putative target gene inhA was transferred in Mycobacterium tuberculosis. The inhA(S94A) allele was sufficient to confer clinically relevant levels(More)
The front-line antituberculosis drug isoniazid (INH) and the related drug ethionamide (ETH) are prodrugs that upon activation inhibit the synthesis of mycolic acids, leading to bactericidal activity. Coresistance to INH and ETH can be mediated by dominant mutations in the target gene inhA, encoding an enoyl-ACP reductase, or by recessive mutations in ndh,(More)
Crystal Structure and Activity Studies of the Mycobacterium tuberculosis -Lactamase Reveal Its Critical Role in Resistance to -Lactam Antibiotics Feng Wang, Craig Cassidy, and James C. Sacchettini* Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, and Center for Structural Biology, Institute of Biosciences and(More)