Learn More
We present a new semi-supervised training procedure for conditional random fields (CRFs) that can be used to train sequence segmentors and labelers from a combination of labeled and unlabeled training data. Our approach is based on extending the minimum entropy regularization framework to the structured prediction case, yielding a training objective that(More)
Elastic Bunch Graph Matching has been proved effective for face recognition. But the recognition procedure needs large computation. Here we present an automatic face recognition method based on local feature analysis. The local features are firstly located by the face structure knowledge and gray level distribution information, rather than searching on the(More)
Active Shape Model (ASM) is a powerful statistical tool for face alignment by shape. However, it can suffer from changes in illumination and facial expression changes, and local minima in optimization. In this paper, we present a method, W-ASM, in which Gabor wavelet features are used for modeling local image structure. The magnitude and phase of Gabor(More)
This paper proposes a parameterized polynomial time approximation scheme (PTAS) for aligning two protein structures, in the case where one protein structure is represented by a contact map graph and the other by a contact map graph or a distance matrix. If the sequential order of alignment is not required, the time complexity is polynomial in the protein(More)
This paper proposes a tree decomposition of protein structures, which can be used to efficiently solve two key subproblems of protein structure prediction: protein threading for backbone prediction and protein side-chain prediction. To develop a unified tree-decomposition based approach to these two subproblems, we model them as a geometric neighborhood(More)
With growing scale and complexity of software-intensive systems, the requirements to evaluating the effects of components on software quality will dramatically increase. Existing quality metrics for software architecture demand users to perform a tedious and high-cost process so that they cannot meet the needs for a rapid, simple and preliminary evaluation.(More)
We present a novel, semi-supervised approach to training discriminative random fields (DRFs) that efficiently exploits labeled and unlabeled training data to achieve improved accuracy in a variety of image processing tasks. We formulate DRF training as a form of MAP estimation that combines conditional loglikelihood on labeled data, given a data-dependent(More)