Learn More
In this paper, we report an active contour algorithm that is capable of using prior shapes. The energy functional of the contour is modified so that the energy depends on the image gradient as well as the prior shape. The model provides the segmentation and the transformation that maps the segmented contour to the prior shape. The active contour is able to(More)
Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics,(More)
Calcium-activated chloride channels (CaCC) with similar hallmark features are present in many cell types and mediate important physiological functions including epithelial secretion, sensory signal transduction, and smooth muscle contraction. Having identified TMEM16A of the transmembrane proteins with unknown function (TMEM) 16 family as a CaCC subunit, we(More)
Collapse of membrane lipid asymmetry is a hallmark of blood coagulation. TMEM16F of the TMEM16 family that includes TMEM16A/B Ca(2+)-activated Cl(-) channels (CaCCs) is linked to Scott syndrome with deficient Ca(2+)-dependent lipid scrambling. We generated TMEM16F knockout mice that exhibit bleeding defects and protection in an arterial thrombosis model(More)
Calcium-activated chloride channels (CaCCs) are widely expressed in various tissues and implicated in physiological processes such as sensory transduction, epithelial secretion, and smooth muscle contraction. Transmembrane proteins with unknown function 16 (TMEM16A) has recently been identified as a major component of CaCCs. Detailed molecular analysis of(More)
Central neurons respond to synaptic inputs from other neurons by generating synaptic potentials. Once the summated synaptic potentials reach threshold for action potential firing, the signal propagates leading to transmitter release at the synapse. The calcium influx accompanying such signaling opens calcium-activated ion channels for feedback regulation.(More)
A novel technique called "k-t GRAPPA" is introduced for the acceleration of dynamic magnetic resonance imaging. Dynamic magnetic resonance images have significant signal correlations in k-space and time dimension. Hence, it is feasible to acquire only a reduced amount of data and recover the missing portion afterward. Generalized autocalibrating partially(More)
The mRNA for the immediate early gene Arc/Arg3.1 is induced by strong synaptic activation and is rapidly transported into dendrites, where it localizes at active synaptic sites. NMDA receptor activation is critical for mRNA localization at active synapses, but downstream events that mediate localization are not known. The patterns of synaptic activity that(More)
There is increasing evidence that long-lasting forms of activity-dependent synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), require local synthesis of proteins within dendrites. Identifying novel dendritic mRNAs and determining how their distribution and translation is regulated is a high priority. We demonstrate(More)
TMEM16C belongs to the TMEM16 family, which includes the Ca(2+)-activated Cl(-) channels TMEM16A and TMEM16B and a small-conductance, Ca(2+)-activated, nonselective cation channel (SCAN), TMEM16F. We found that in rat dorsal root ganglia (DRG) TMEM16C was expressed mainly in the IB4-positive, non-peptidergic nociceptors that also express the(More)