Learn More
INTRODUCTION Cell death is a central event in the pathogenesis of sepsis and is reflected by circulating nucleosomes. Circulating nucleosomes were suggested to play an important role in inflammation and were demonstrated to correlate with severity and outcome in sepsis patients. We recently showed that plasma can release nucleosomes from late apoptotic(More)
OBJECTIVE Cell death leading to circulating nucleosomes and histones is a critical step in the pathogenesis of sepsis and contributes to lethality. Activated protein C was demonstrated to attenuate the harmful effects of histones. The objective of this retrospective study was to evaluate whether nucleosomes correlate with the severity of the inflammatory(More)
OBJECTIVE The formation of neutrophil extracellular traps and the exposure of nucleosomes on these neutrophil extracellular traps contribute to coagulation activation and the propagation of deep vein thrombosis (DVT) in animal models. However, no data are available on the role of neutrophil extracellular traps or nucleosomes in patients with thrombosis. (More)
Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in(More)
Severe tissue injury results in early activation of serine protease systems including the coagulation and complement cascade. In this context, little is known about factor VII-activating protease (FSAP), which is activated by substances released from damaged cells such as histones and nucleosomes. Therefore, we have measured FSAP activation in trauma(More)
Factor VII-activating protease (FSAP) is a serine protease in plasma that has a role in coagulation and fibrinolysis. FVII could be activated by purified FSAP in a tissue factor independent manner and pro-urokinase has been demonstrated to be a substrate for purified FSAP in-vitro. However, the physiological role of FSAP in haemostasis remains unclear. More(More)
Plasma proteins such as early complement components and IgM are involved in the removal of late apoptotic or secondary necrotic (sn) cells. We have recently described how a plasma protease that could be inhibited by the protease inhibitor aprotinin was essential to remove nucleosomes from sn cells. An obvious candidate, plasmin, did indeed have(More)
OBJECTIVE Removal of dead cells is essential in the maintenance of tissue homeostasis, and efficient removal prevents exposure of intracellular content to the immune system, which could lead to autoimmunity. The plasma protease factor VII-activating protease (FSAP) can release nucleosomes from late apoptotic cells. FSAP circulates as an inactive(More)
BACKGROUND Neutrophil extracellular traps (NETs) are a central player in the host response to bacteria: neutrophils release extracellular DNA (nucleosomes) and neutrophil elastase to entrap and kill bacteria. We studied the role of NETs in Burkholderia pseudomallei infection (melioidosis), an important cause of Gram-negative sepsis in Southeast Asia. (More)
BACKGROUND Factor VII-activating protease (FSAP) is a serine protease that circulates in plasma in its inactive single-chain form and can be activated upon contact with dead cells. When activated by apoptotic cells, FSAP leads to the release of nucleosomes. The serpins C1-inhibitor and α(2) -antiplasmin are reported to be the major inhibitors of FSAP.(More)