Felix M. Zörgiebel

Learn More
We present a theoretical framework for the calculation of charge transport through nanowire-based Schottky-barrier field-effect transistors that is conceptually simple but still captures the relevant physical mechanisms of the transport process. Our approach combines two approaches on different length scales: (1) the finite element method is used to model(More)
Here we propose a platform for the detection of unlabeled human α-thrombin down to the picomolar range in a fluorescence-based aptamer assay. In this concept, thrombin is captured between two different thrombin binding aptamers, TBA1 (15mer) and TBA2 (29mer), each labeled with a specific fluorescent dye. One aptamer is attached to the surface, the second(More)
The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire(More)
Just Accepted This is a " Just Accepted " manuscript, which has been examined by the peer-review process and has been accepted for publication. A " Just Accepted " manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Tsinghua University Press (TUP) provides " Just Accepted " as(More)
We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-free arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sweep is presented, which allows the straightforward determination of the point of maximum sensitivity of the device and allows sensing(More)
  • 1