Felix E. Zajac

Learn More
Skeletal muscles transform neural control signals into forces that act upon the body segments to effect a coordinated motor task. This transformation is complex, not only because the properties of muscles are complex, but because the tendon affects the transmission of muscle force to the skeleton. This review focuses on how to synthesize basic properties of(More)
We have developed a model of the human lower extremity to study how surgical changes in musculoskeletal geometry and musculotendon parameters affect muscle force and its moment about the joints. The lines of action of 43 musculotendon actuators were defined based on their anatomical relationships to three-dimensional bone surface representations. A model(More)
1. A variety of physiological properties of single motor units have been studied in the gastrocnemius muscle (primarily in the medial head) of pentobarbitone-anaesthetized cats. Intracellular stimulation of individual motoneurones ensured functional isolation of the muscle units innervated by them.2. A system for muscle unit classification was developed(More)
Evidence suggests that the nervous system controls motor tasks using a low-dimensional modular organization of muscle activation. However, it is not clear if such an organization applies to coordination of human walking, nor how nervous system injury may alter the organization of motor modules and their biomechanical outputs. We first tested the hypothesis(More)
Walking is a motor task requiring coordination of many muscles. Previous biomechanical studies, based primarily on analyses of the net ankle moment during stance, have concluded different functional roles for the plantar flexors. We hypothesize that some of the disparities in interpretation arise because of the effects of the uniarticular and biarticular(More)
Are fingertip forces produced by subject-independent patterns of muscle excitation? If so, understanding the mechanical basis underlying these muscle coordination strategies would greatly assist surgeons in evaluating options for restoring grasping. With the finger in neutral ad- abduction and flexed 45 degrees at the MCP and PIP, and 10 degrees at DIP(More)
The ankle plantar flexors were previously shown to support the body in single-leg stance to ensure its forward progression [J. Biomech. 34 (2001) 1387]. The uni- (SOL) and biarticular (GAS) plantar flexors accelerated the trunk and leg forward, respectively, with each opposing the effect of the other. Around mid-stance their net effect on the trunk and the(More)
A simulation based on a forward dynamical musculoskeletal model was computed from an optimal control algorithm to understand uni- and bi-articular muscle coordination of maximum-speed startup pedaling. The muscle excitations, pedal reaction forces, and crank and pedal kinematics of the simulation agreed with measurements from subjects. Over the crank cycle,(More)
We have developed a musculoskeletal model of the human lower extremity for computer simulation studies of musculotendon function and muscle coordination during movement. This model incorporates the salient features of muscle and tendon, specifies the musculoskeletal geometry and musculotendon parameters of 18 musculotendon actuators, and defines the active(More)