Felix Blankenburg

Learn More
We used simultaneous electroencephalogram-functional magnetic resonance imaging (EEG-fMRI) and EEG-near infrared spectroscopy (NIRS) to investigate whether changes of the posterior EEG alpha rhythm are correlated with changes in local cerebral blood oxygenation. Cross-correlation analysis of slowly fluctuating, spontaneous rhythms in the EEG and the fMRI(More)
BACKGROUND Regions in human frontal cortex may have modulatory top-down influences on retinotopic visual cortex, but to date neuroimaging methods have only been able to provide indirect evidence for such functional interactions between remote but interconnected brain regions. Here we combined transcranial magnetic stimulation (TMS) with concurrent(More)
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions(More)
We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We(More)
Actions are guided by prior sensory information [1-10], which is inherently uncertain. However, how the motor system is sculpted by trial-by-trial content of current sensory information remains largely unexplored. Previous work suggests that conditional probabilities, learned under a particular context, can be used preemptively to influence the output of(More)
During voluntary action, dorsal premotor cortex (PMd) may exert influences on motor regions in both hemispheres, but such interregional interactions are not well understood. We used transcranial magnetic stimulation (TMS) concurrently with event-related functional magnetic resonance imaging to study such interactions directly. We tested whether causal(More)
Medial-to-lateral somatotopy is a well-established feature of the human primary somatosensory cortex (SI); however, it is unknown whether, similarly to non-human primates, a rostral-to-caudal somatotopic arrangement exists as well. Therefore, in this functional magnetic resonance imaging (fMRI) study on eight healthy human subjects, five circumscribed skin(More)
The way that we interpret and interact with the world entails making decisions on the basis of available sensory evidence. Recent primate neurophysiology [1-6], human neuroimaging [7-13], and modeling experiments [14-19] have demonstrated that perceptual decisions are based on an integrative process in which sensory evidence accumulates over time until an(More)
Reinforcing effects of reward on action are well established, but possible effects on sensory function are less well explored. Here, using functional magnetic resonance imaging, we assessed whether reward can influence somatosensory judgments and modulate activity in human somatosensory cortex. Participants discriminated electrical somatosensory stimuli on(More)
Previous studies using combined electrical and hemodynamic measurements of brain activity, such as EEG and (BOLD) fMRI, have yielded discrepant results regarding the relationship between neuronal activity and the associated BOLD response. In particular, some studies suggest that this link, or transfer function, depends on the frequency content of neuronal(More)