Learn More
We used simultaneous electroencephalogram-functional magnetic resonance imaging (EEG-fMRI) and EEG-near infrared spectroscopy (NIRS) to investigate whether changes of the posterior EEG alpha rhythm are correlated with changes in local cerebral blood oxygenation. Cross-correlation analysis of slowly fluctuating, spontaneous rhythms in the EEG and the fMRI(More)
BACKGROUND Regions in human frontal cortex may have modulatory top-down influences on retinotopic visual cortex, but to date neuroimaging methods have only been able to provide indirect evidence for such functional interactions between remote but interconnected brain regions. Here we combined transcranial magnetic stimulation (TMS) with concurrent(More)
Medial-to-lateral somatotopy is a well-established feature of the human primary somatosensory cortex (SI); however, it is unknown whether, similarly to non-human primates, a rostral-to-caudal somatotopic arrangement exists as well. Therefore, in this functional magnetic resonance imaging (fMRI) study on eight healthy human subjects, five circumscribed skin(More)
Reinforcing effects of reward on action are well established, but possible effects on sensory function are less well explored. Here, using functional magnetic resonance imaging, we assessed whether reward can influence somatosensory judgments and modulate activity in human somatosensory cortex. Participants discriminated electrical somatosensory stimuli on(More)
Previous studies using combined electrical and hemodynamic measurements of brain activity, such as EEG and (BOLD) fMRI, have yielded discrepant results regarding the relationship between neuronal activity and the associated BOLD response. In particular, some studies suggest that this link, or transfer function, depends on the frequency content of neuronal(More)
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions(More)
In this study, the feasibility of dipole source localization (DSL) and coregistration with functional magnetic resonance imaging (fMRI) activation patterns on the basis of simultaneously acquired data is demonstrated. Brain activity was mapped during the performance of a somatosensory single reaction and a choice reaction task at high spatiotemporal(More)
In the primary somatosensory cortex (SI) of non-human primates, receptive field properties have been shown to differ between its sub-areas with increasing convergence in areas 1 and 2 as compared with area 3b. In this study, we searched for a similar functional organization of human SI. We performed fMRI in healthy subjects during separate or simultaneous(More)
Transcranial magnetic stimulation (TMS) produces a direct causal effect on brain activity that can now be studied by new approaches that simultaneously combine TMS with neuroimaging methods, such as functional magnetic resonance imaging (fMRI). In this review we highlight recent concurrent TMS-fMRI studies that illustrate how this novel combined technique(More)
An emerging field of human brain imaging deals with the characterization of the connectome, a comprehensive global description of structural and functional connectivity within the human brain. However, the question of how functional and structural connectivity are related has not been fully answered yet. Here, we used different methods to estimate the(More)