Felipe Espinosa

Learn More
A main problem in autonomous vehicles in general, and in Unmanned Aerial Vehicles (UAVs) in particular, is the determination of the attitude angles. A novel method to estimate these angles using off-the-shelf components is presented. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Three(More)
The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic(More)
This paper describes an innovative routing strategy for intelligent transportation units willing to perform merging manoeuvres with a moving convoy. In particular, we consider a transportation unit located inside a city (pursuer unit), and which wishes to join a convoy that is constantly moving around the city. We first describe a solution that considers(More)
We consider the problem of remotely operating an autonomous robot through a wireless communication channel. Our goal is to achieve a satisfactory tracking performance while reducing network usage. To attain this objective we implement a self-triggered strategy that adjusts the triggering condition to the observed tracking error. After the theoretical(More)
Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like(More)
This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate(More)
This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and(More)
This article presents a control solution for the guidance of wheeled convoy units in non-linear trajectories. The proposal consists of a Mamdani fuzzy controller to solve the Decentralized Control problem as applied to a set of units following a leader, whilst guaranteeing the so called “string stability” condition of the convoy.
It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver's behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution(More)
This document describes the proposal of an internal and external communication architecture implemented in order to develop cooperative tasks among robotic units. The key of this communication system are the client-server links designed with Player/Stage for periodical control tasks and with sockets for non periodical ones. Each mobile unit acts as a node,(More)