Felicity E. Lumb

Learn More
Filarial nematodes cause long-term infections in hundreds of millions of people. A significant proportion of those affected develop a number of debilitating health problems but, remarkably, such infections are often unnoticed for many years. It is well known that parasitic worms modulate, yet do not completely inhibit, host immunological pathways, promoting(More)
Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory to existing conventional and biologic therapies, and hence successful development of novel treatments remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule analogue, SMA-12b, of an immunomodulatory parasitic worm(More)
OBJECTIVE The hygiene hypothesis suggests that parasitic helminths (worms) protect against the development of autoimmune disease via a serendipitous side effect of worm-derived immunomodulators that concomitantly promote parasite survival and limit host pathology. The aim of this study was to investigate whether ES-62, a phosphorylcholine-containing(More)
Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common health and economic problem worldwide, and one of the major risk factors for developing type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated with MetS and obesity. A dominant type 2/anti-inflammatory response is required for metabolic(More)
ES-62, a glycoprotein secreted by the filarial nematode Acanthocheilonema viteae, has been shown to modulate the immune system through subversion of signal transduction pathways operating in various immune system cells. With respect to human bone marrow-derived mast cells (BMMCs), ES-62 was previously shown to inhibit FcϵRI-mediated mast cell functional(More)
ES-62 is a glycoprotein secreted by the filarial nematode Acanthocheilonema viteae that protects against ovalbumin (OVA)-induced airway hyper-responsiveness in mice by virtue of covalently attached anti-inflammatory phosphorylcholine (PC) residues. We have recently generated a library of small molecule analogues (SMAs) of ES-62 based around its active PC(More)
ES-62, a glycoprotein secreted by the parasitic filarial nematode Acanthocheilonema viteae, subverts host immune responses towards anti-inflammatory phenotypes by virtue of covalently attached phosphorylcholine (PC). The PC dictates that ES-62 exhibits protection in murine models of inflammatory disease and hence a library of drug-like PC-based small(More)
  • 1