Learn More
Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si(More)
Carbon nanofibers prepared via electrospinning and following carbonization are summarized by focusing on the structure and properties in relation to their applications, after a brief review of electrospinning of some polymers. Carbon precursors, pore structure control, improvement in electrical conductivity,and metal loading into carbon nanofibers via(More)
The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery(More)
A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm(-3), 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is(More)
Destructive gas generation with associated swelling has been a major challenge to the large-scale application of lithium ion batteries (LIBs) made from Li(4)Ti(5)O(12) (LTO) anodes. Here we report root causes of the gassing behavior, and suggest remedy to suppress it. The generated gases mainly contain H(2), CO(2) and CO, which originate from interfacial(More)
Prototyping of nanoporous carbon membranes with three-dimensional microscale patterns is significant for integration of such multifunctional materials into various miniaturized systems. Incorporating nano material synthesis into microelectronics technology, we present a novel approach to direct prototyping of carbon membranes with highly nanoporous(More)
A cost-effective approach to obtain electrode materials with excellent electrochemical performance is critical to the development of supercapacitors (SCs). Here we report the preparation of a three-dimensional (3D) honeycomb-like porous carbon (HLPC) by the simple carbonization of pomelo peel followed by KOH activation. Structural characterization indicates(More)