Learn More
A full-length coding domain sequence of a gene analogous to granule-bound starch synthase (GBSS; ADP-glucose-starch glucosyltransferase, EC 2.4.1.21) was cloned and defined as OsGBSSII based on a Nitrogen (N)-starvation-induced cDNA library constructed using the rapid subtraction hybridization method. The deduced amino acid sequence of OsGBSSII was 62–85%(More)
Three starch synthase (SS) genes, OsSSII-1, OsSSII-2 and OsSSII-3, were identified in rice (Oryza sativa L.) and localized to chromosomes 10, 2 and 6, respectively. The three OsSSII full-length cDNAs were cloned, and the predicted amino acid sequences were found to share 52–73% similarity with other members of the plant SSII family. The SS activity of each(More)
The DDR1 receptor tyrosine kinase is activated by matrix collagens and has been implicated in numerous cellular functions such as proliferation, differentiation, adhesion, migration, and invasion. Here we report the discovery of a potent and selective DDR1 inhibitor, DDR1-IN-1, and present the 2.2 Å DDR1 co-crystal structure. DDR1-IN-1 binds to DDR1 in the(More)
OBJECTIVES Tyrosine kinase inhibitor (TKI)-treated acute myeloid leukemia (AML) patients commonly show rapid and significant peripheral blood blast cell reduction, however a marginal decrease in bone marrow blasts. This suggests a protective environment and highlights the demand for a better understanding of stromal:leukemia cell communication. As a(More)
PURPOSE Activating mutations in the RAS oncogene occur frequently in human leukemias. Direct targeting of RAS has proven to be challenging, although targeting of downstream RAS mediators, such as MEK, is currently being tested clinically. Given the complexity of RAS signaling, it is likely that combinations of targeted agents will be more effective than(More)
Numerous lines of evidence suggest a strong link between diabetes mellitus and Alzheimer's disease (AD). Impaired insulin signaling and insulin resistance occur not only in diabetes but also in the brain of AD. Recent evidence has indicated that peroxisome proliferator-activated receptor γ (PPARγ) agonists thiazolidinediones (TZDs) can decrease β-amyloid(More)
Direct targeting of rat sarcoma (RAS), which is frequently mutated, has proven to be challenging, and inhibition of individual downstream RAS mediators has resulted in limited clinical efficacy. We designed a chemical screen to identify compounds capable of potentiating mammalian target of rapamycin (mTOR) inhibition in mutant RAS-positive leukemia, and(More)
BMX is a member of the TEC family of nonreceptor tyrosine kinases. We have used structure-based drug design in conjunction with kinome profiling to develop a potent, selective, and irreversible BMX kinase inhibitor, BMX-IN-1, which covalently modifies Cys496. BMX-IN-1 inhibits the proliferation of Tel-BMX-transformed Ba/F3 cells at two digit nanomolar(More)
PI3Kδ has been found to be over-expressed in B-Cell-related malignancies. Despite the clinical success of the first selective PI3Kδ inhibitor, CAL-101, inhibition of PI3Kδ itself did not show too much cytotoxic efficacy against cancer cells. One possible reason is that PI3Kδ inhibition induced autophagy that protects the cells from death. Since class III(More)
STK16, a serine/threonine protein kinase, is ubiquitously expressed and is conserved among all eukaryotes. STK16 has been implicated to function in a variety of cellular processes such as VEGF and cargo secretion, but the pathways through which these effects are mediated remain to be elucidated. Through screening of our focused library of kinase inhibitors,(More)