Learn More
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and(More)
The NMDA receptor and the brain-derived neurotrophic factor (BDNF) are involved in central sensitization and synaptic plasticity in the spinal cord. To determine whether the spinal cord BDNF contributes to the development and maintenance of neuropathic pain by activation of the dorsal horn NR2B-containing NMDA (NMDA-2B) receptors, this study was designed to(More)
OBJECTIVE We have reported "heat-sensitization" responses during suspended moxibustion, whose occurrence is associated with significantly better therapeutic effects. The present study aimed to characterize the electrophysiological features of this interesting phenomenon with high-density electroencephalography (EEG). METHODS We performed EEG recording in(More)
  • Jia Liu, Feng-Yu Liu, Zhi-Qian Tong, Zhi-Hua Li, Wen Chen, Wen-Hong Luo +7 others
  • 2013
BACKGROUND Bone cancer pain seriously affects the quality of life of cancer patients. Our previous study found that endogenous formaldehyde was produced by cancer cells metastasized into bone marrows and played an important role in bone cancer pain. However, the mechanism of production of this endogenous formaldehyde by metastatic cancer cells was unknown(More)
Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's(More)
The hippocampus is actively involved in pain modulation. Previous studies have shown that inhibition, resection or pharmacological interference of the hippocampus or its subcortical afferent sources such as the medial septum and amygdala produce anti-nociceptive effects. But how the cortical connections of the hippocampus modulate pain remains unexplored.(More)
  • 1