Learn More
Mitochondria are dynamic organelles that undergo continual fusion and fission to maintain their morphology and functions, but the mechanism involved is still not clear. Here, we investigated the effect of mitochondrial oxidative stress triggered by high-fluence low-power laser irradiation (HF-LPLI) on mitochondrial dynamics in human lung adenocarcinoma(More)
Translocation and localization of single-walled carbon nanotubes (SWNTs) in normal and cancerous cells have significant biomedical implications. In this study, SWNTs functionalized with different biomolecules in cells were observed with confocal laser scanning microscopy. Functionalized with PL-PEG, SWNTs were found to localize exclusively in mitochondria(More)
Indocyanine green (ICG) is a near-infrared (NIR) imaging agent and is also an ideal light absorber for laser-mediated photothermal therapy. This NIR dye could serve as a basis of a dual-functional probe with integrated optical imaging and photothermal therapy capabilities. However, applications of ICG remain limited by its concentration-dependent(More)
The aim of the study is to dynamically and non-invasively monitor the apoptosis events in vivo during photodynamic therapy (PDT) and chemotherapy. A FRET probe, SCAT3, was utilized to determine activation of caspase-3 during tumor cell apoptosis in mice, induced by PDT, and cisplatin treatments. Using this method, dynamics of caspase-3 activation was(More)
Although anti-tumor immunological responses have been mainly associated with necrosis, apoptosis-associated immune responses have been recently suggested as well. In this study, we investigated anti-tumor immune responses and regulatory mechanisms of HSP70 using apoptotic cells induced by photodynamic therapy (PDT). The relationships between HSP70 release,(More)
Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2) low-level laser therapy (LLLT), a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced(More)
Autophagy and apoptosis play important roles in the development, cellular homeostasis and, especially, oncogenesis of mammals. They may be triggered by common upstream signals, resulting in combined autophagy and apoptosis. In other instances, they may be mutually exclusive. Recent studies have suggested possible molecular mechanisms for crosstalk between(More)
Autophagy is an evolutionarily conserved process for bulk degradation of cytoplasmic components, including large molecules and organelles. It can either help to enhance or to resist apoptosis, depending on the circumstances. The mechanism of how autophagy impacts apoptosis and the subsequent cellular events upon heat shock remains unclear. In this study, we(More)
Single-walled carbon nanotubes (SWNTs) have a high optical absorbance in the near-infrared (NIR) region. In this special optical window, biological systems are known to be highly transparent. The optical properties of SWNTs provide an opportunity for selective photothermal therapy for cancer treatment. Specifically, CoMoCAT nanotubes with a uniform size(More)
Nanomaterials have recently attracted much attention as efficient transducers for cancer photothermal therapy, based on their intrinsic absorption properties in the near-infrared region. This study explores a novel therapy model with mitochondria-targeting single-walled carbon nanotubes (SWNTs), which act efficiently to convert 980-nm laser energy into heat(More)