Fei Liu

Learn More
Fluorescence molecular tomography (FMT) plays an important role in studying physiological and pathological processes of small animals in vivo at molecular level. However, this technique suffers from relatively low spatial resolution. To complement the problem, there has been a strong demand for providing functional and morphological analysis at the same(More)
The high degree of absorption and scattering of photons propagating through biological tissues makes fluorescence molecular tomography (FMT) reconstruction a severe ill-posed problem and the reconstructed result is susceptible to noise in the measurements. To obtain a reasonable solution, Tikhonov regularization (TR) is generally employed to solve the(More)
—In this paper, fluorescence molecular tomography (FMT) imaging guided by priors from simultaneous positron emission tomography (PET) was performed on a multi-modality imaging system combining PET and FMT. The target prior information from PET images was employed to the FMT reconstruction procedure using the iteratively reweighted least-squares method.(More)
The ERCC1 and ERCC2 genes are important in repairing DNA damage and genomic instability, and are involved in the nucleotide excision repair pathway. We hypothesized that single nucleotide polymorphisms (SNPs) in ERCC1 and ERCC2 are associated with the risk of colorectal cancer in a Chinese population. To test this hypothesis, we genotyped four functional(More)
The promise of cell therapy for repair and restoration of damaged tissues or organs relies on administration of large dose of cells whose healing benefits are still limited and sometimes irreproducible due to uncontrollable cell loss and death at lesion sites. Using a large amount of therapeutic cells increases the costs for cell processing and the risks of(More)
Dynamic fluorescence diffuse optical tomography (D-FDOT) is important for drug delivery research. However, the low spatial resolution of FDOT and the complex kinetics of drug limit the ability of D-FDOT in resolving metabolic processes of drug throughout whole body of small animals. In this paper, we propose an independent component analysis (ICA)-based(More)
Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI) provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel(More)
The analysis of dynamic fluorescence diffuse optical tomography (D-FDOT) is important both for drug delivery research and for medical diagnosis and treatment. The low spatial resolution and complex kinetics, however, limit the ability of FDOT in resolving drug distributions within small animals. Principal component analysis (PCA) provides the capability of(More)
Fluorescence molecular tomography (FMT) is an attractive imaging tool for quantitatively and three-dimensionally resolving fluorophore distributions in small animals, but it suffers from low spatial resolution due to its inherent ill-posed nature. Structural priors obtained from a secondary modality system such as x-ray computed tomography or magnetic(More)