Federico Zaraga

  • Citations Per Year
Learn More
The development of color pixels in modern digital imaging has led to devices in which color detection is not based on the use of physical color filters but relies on the wavelength dependence of the silicon absorption coefficient in the visible range. In some of these devices the responsivity of each color channel can be electrically tuned by changing the(More)
In this work the use of the Transverse Field Detector (TFD) as a device for multispectral image acquisition is proposed. The TFD is a color imaging pixel capable of color reconstruction without color filters. Its basic working principle is based on the generation of a suitable electric field configuration inside a Silicon depleted region by means of biasing(More)
The Transverse Field Detector (TFD) is a filter-less and demosaicking-less color sensitive device that easily allows the design of more than three color acquisition channels at each pixel site. The separation of light into different wavelength bands is based on the generation of transverse electric fields inside the device depleted region, and exploits the(More)
The transmission spectra of aqueous solutions of transition metal ions have been measured. The use of a combination of different ions makes it possible to obtain filters of adjustable transmission peak and bandwidth. A computer method has been developed for fast calculation of optimized filters. Use of these filters with high-intensity sources is discussed.
The Transverse Field Detector (TFD), a filter-less and tunable color sensitive pixel, is based on the generation of specific electric field configurations within a depleted Silicon volume. Each field configuration determines a set of three or more spectral responses that can be used for direct color acquisition at each pixel position. In order to avoid(More)
  • 1