Federico Pérez González

Learn More
During limb development, coordinated expression of several Hoxd genes is required in presumptive digits. We searched for the underlying control sequences upstream from the cluster and found Lunapark (Lnp), a gene which shares limb and CNS expression specificities with both Hoxd genes and Evx2, another gene located nearby. We used a targeted enhancer-trap(More)
The utility of induced pluripotent stem (iPS) cells for investigating the molecular logic of pluripotency and for eventual clinical application is limited by the low efficiency of current methods for reprogramming. Here we show that reprogramming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least(More)
Hox genes are major determinants of the animal body plan, where they organize structures along both the trunk and appendicular axes. During mouse limb development, Hoxd genes are transcribed in two waves: early on, when the arm and forearm are specified, and later, when digits form. The transition between early and late regulations involves a functional(More)
Pluripotent stem-cell lines can be obtained through the reprogramming of somatic cells from different tissues and species by ectopic expression of defined factors. In theory, these cells--known as induced pluripotent stem cells (iPSCs)--are suitable for various purposes, including disease modelling, autologous cell therapy, drug or toxicity screening and(More)
Alessandra Giorgetti,1 Nuria Montserrat,1 Trond Aasen,1,2 Federico Gonzalez,1 Ignacio Rodrı́guez-Pizà,1 Rita Vassena,1 Angel Raya,1,2,3 Stéphanie Boué,1 Maria Jose Barrero,1 Begoña Aran Corbella,1 Marta Torrabadella,4 Anna Veiga,1 and Juan Carlos Izpisua Belmonte1,5,* 1Center of Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain(More)
The parasite Toxoplasma gondii replicates in a specialized intracellular vacuole and causes disease in many species. Protection from toxoplasmosis is mediated by CD8(+) T cells, but the T. gondii antigens and host genes required for eliciting protective immunity are poorly defined. Here we identified GRA6, a polymorphic protein secreted in the(More)
Human pluripotent stem cells (hPSCs) offer a unique platform for elucidating the genes and molecular pathways that underlie complex traits and diseases. To realize this promise, methods for rapid and controllable genetic manipulations are urgently needed. By combining two newly developed gene-editing tools, the TALEN and CRISPR/Cas systems, we have(More)
The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of(More)
Reprogramming of pig somatic cells to induced pluripotent stem cells provides a tremendous advance in the field of regenerative medicine since the pig represents an ideal large animal model for the preclinical testing of emerging cell therapies. However, the current generation of pig-induced pluripotent stem cells (piPSCs) require the use of time-consuming(More)
The ability of killer T cells carrying the CD8 antigen to detect tumours or intracellular pathogens requires an extensive display of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of potential target cells. These peptides are derived from almost all intracellular proteins and reveal the presence of foreign(More)