Learn More
A consistent link appears to exist between predominance of vagal or sympathetic activity and predominance of HF or LF oscillations, respectively: RR variability contains both of these rhythms, and their relative powers appear to subserve a reciprocal relation like that commonly found in sympathovagal balance. In this respect, it is our opinion that rhythms(More)
In 57 normal subjects (age 20-60 years), we analyzed the spontaneous beat-to-beat oscillation in R-R interval during control recumbent position, 90 degrees upright tilt, controlled respiration (n = 16) and acute (n = 10) and chronic (n = 12) beta-adrenergic receptor blockade. Automatic computer analysis provided the autoregressive power spectral density, as(More)
This consensus statement has been compiled on behalf of the International Society for Holter and Noninvasive Electrophysiology. It reviews the topic of heart rate turbulence (HRT) and concentrates on technologies for measurement, physiologic background and interpretation, and clinical use of HRT. It also lists suggestions for future research. The phenomenon(More)
BACKGROUND The powers of the low-frequency (LF) and high-frequency (HF) oscillations characterizing heart rate variability (HRV) appear to reflect, in their reciprocal relationship, changes in the state of the sympathovagal balance occurring during numerous physiological and pathophysiological conditions. However, no adequate information is available on the(More)
A parametric method for autoregressive (AR) auto- and cross-spectral analysis is presented for the contemporaneous processing of heart rate and arterial blood pressure variability signals. In particular, the introduced bivariate spectral analysis (phase and coherence spectra) provides quantitative and objective means which are useful to measure the role(More)
A dynamic linear parametric model is designed to quantify the dependence of ventricular repolarisation duration variability on heart period changes and other immeasurable factors. The model analyses the beat-to-beat series of the RR duration and of the interval between R- and T-wave apexes (RT period). Directly from these two signals, a parametric(More)
We analyzed the discharges of 77 single neurons located in the rostral ventrolateral medulla (RVLM, n = 25), caudal ventrolateral medulla (CVLM, n = 18), lateral tegmental field (LTF, n = 19) and caudal raphe nuclei (n = 15). These recordings were made from 36 vagotomized and sinoaortic denervated cats that were either decerebrate (n = 27) or anesthetized(More)
In this study, we tested the hypothesis that the neural control of circulation in humans undergoes continuous but in part predictable changes throughout the day and night. Dynamic 24-hour recordings were obtained in two groups of ambulant subjects. In 18 hospitalized patients free to move, direct high-fidelity arterial pressures and electrocardiograms were(More)