Federico Golmar

Learn More
Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to(More)
Graphene plasmons promise unique possibilities for controlling light in nanoscale devices and for merging optics with electronics. We developed a versatile platform technology based on resonant optical antennas and conductivity patterns for launching and control of propagating graphene plasmons, an essential step for the development of graphene plasmonic(More)
The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material(More)
  • 1