Learn More
Wireless capsule endoscopy (WCE) allows for comfortable video explorations of the gastrointestinal (GI) tract, with special indication for the small bowel. In the other segments of the GI tract also accessible to probe gastroscopy and colonscopy, WCE still exhibits poorer diagnostic efficacy. Its main drawback is the impossibility of controlling the capsule(More)
The use of video capsules for noninvasive explorations of the digestive tube is progressively increasing today. At present, the motion of these wireless endoscopic devices cannot be controlled and they proceed by means of visceral peristalsis and gravity. Aimed at enabling a motion control, the technique described here uses an external magnetic field(More)
This paper describes the early conception and latest developments of electroactive polymer (EAP)-based sensors, actuators, electronic components, and power sources, implemented as wearable devices for smart electronic textiles (e-textiles). Such textiles, functioning as multifunctional wearable human interfaces, are today considered relevant promoters of(More)
This paper describes a technique to control the navigation of traditional wireless endoscopic capsules and reports preliminary proof-of-concept investigations. These capsules are used for noninvasive explorations of the digestive tube. At present, their motion cannot be controlled and they proceed by means of the visceral peristalsis. In order to enable(More)
This work intends to extend the electromechanical characterisation of dielectric elastomer actuators. Planar actuators were realised with a 50 ␮m-thick film of an acrylic elastomer coated with compliant electrodes. The isotonic transverse strain, the isometric transverse stress and the driving current, due to a 2 s high voltage impulse, were measured for(More)
This paper presents a new type of contractile polymer-based electromechanical linear actuator. The device belongs to the class of dielectric elastomer actuators, which are typically capable of undergoing large deformations induced by an applied electric field. It is based on a novel helical configuration, suitable for the generation of electrically driven(More)
The dream of controlling and guiding computer-based systems using human brain signals has slowly but steadily become a reality. The available technology allows real-time implementation of systems that measure neuronal activity, convert their signals, and translate their output for the purpose of controlling mechanical and electronic systems. This paper(More)
This paper presents an experimentally validated electromechanical model of cylindrical actuators made of dielectric elastomers with compliant electrodes. Modelling was based on independent electrical and mechanical analyses of the specific configuration of the device. The expressions of the electrostatic pressures exerted by the electrodes in response to an(More)