Learn More
Duchenne muscular dystrophy (DMD) is a common X-linked disease characterized by widespread muscle damage that invariably leads to paralysis and death. There is currently no therapy for this disease. Here we report that a subpopulation of circulating cells expressing AC133, a well-characterized marker of hematopoietic stem cells, also expresses early(More)
Duchenne muscular dystrophy is a lethal recessive disease characterized by widespread muscle damage throughout the body. This increases the difficulty of cell or gene therapy based on direct injections into muscles. One way to circumvent this obstacle would be to use circulating cells capable of homing to the sites of lesions. Here, we showed that stem cell(More)
Recent evidence indicates that neural stem cell properties can be found among a mammalian skin-derived multipotent population. A major barrier in the further characterization of the human skin-derived neural progenitors is the inability to isolate this population based on expression of cell surface markers. Our work has been devoted to purified human(More)
AIMS Proteins of the Polycomb repressive complex 2 (PRC2) are epigenetic gene silencers and are involved in tumour development. Their oncogenic function might be associated with their role in stem cell maintenance. The histone methyltransferase Enhancer of Zeste 2 (EZH2) is a key member of PRC2 function: we have investigated its expression and function in(More)
The invasive nature of glioblastoma (GBM) is one important reason for treatment failure. GBM stem/progenitor cells retain the migratory ability of normal neural stem/progenitor cells and infiltrate the brain parenchyma. Here, we identify Rai (ShcC/N-Shc), a member of the family of Shc-like adaptor proteins, as a new regulator of migration of normal and(More)
miR-145 is an important repressor of pluripotency in embryonic stem cells and a tumor suppressor in different cancers. Here, we found that miR-145 is strongly down-regulated in glioblastoma (GB) specimens and corresponding glioblastomaneurospheres (GB-NS, containing GB stem-like cells) compared to normal brain (NB) and to low-grade gliomas (LGG). We(More)
Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive muscle disease due to defect on the gene encoding dystrophin. The lack of a functional dystrophin in muscles results in the fragility of the muscle fiber membrane with progressive muscle weakness and premature death. There is no cure for DMD and current treatment options focus primarily on(More)
In animal models of neurological disorders for cerebral ischemia, Parkinson's disease, and spinal cord lesions, transplantation of mesenchymal stem cells (MSCs) has been reported to improve functional outcome. Three mechanisms have been suggested for the effects of the MSCs: transdifferentiation of the grafted cells with replacement of degenerating neural(More)
In the adult mammalian brain, multipotential neural stem cells (NSC) persist throughout life in areas where neurogenesis is maintained. A distinctive trait of NSCs growing in vitro as neurospheres (NS), is their ability to self-renew, differentiate and migrate to sites of injury, such as gliomas. We have studied the role of Reelin, an extracellular matrix(More)
Glioblastomas represent an important cause of cancer-related mortality with poor survival. Despite many advances, the mean survival time has not significantly improved in the last decades. New experimental approaches have shown tumor regression after the grafting of neural stem cells and human mesenchymal stem cells into experimental intracranial gliomas of(More)