Learn More
OBJECTIVES The spontaneous low frequency fluctuations (LFF) of blood oxygenation level-dependent (BOLD) signal in resting state have been identified as a biological measure of baseline spontaneous activity in the brain. Increasingly, studies of spontaneous resting state functional connectivity have demonstrated neural network abnormalities in bipolar(More)
There are limited resting-state functional magnetic resonance imaging (fMRI) studies in major depressive disorder (MDD). Of these studies, functional connectivity analyses are mostly used. However, a new method based on the magnitude of low frequency fluctuation (LFF) during resting-state fMRI may provide important insight into MDD. In this study, we(More)
In the past decade, neuroimaging research has identified key components in the neural system that underlies bipolar disorder (BD). The ventral prefrontal cortex (VPFC) and amygdala are highly interconnected structures that jointly play a central role in emotional regulation. Numerous research groups have reported prominent structural and functional(More)
BACKGROUND Convergent studies provide support for abnormalities in the structure and functioning of the prefrontal cortex (PFC) and the amygdala, the key components of the neural system that subserves emotional processing in major depressive disorder (MDD). We used resting-state functional magnetic resonance imaging (fMRI) to examine potential amygdala-PFC(More)
Childhood maltreatment (CM) has been associated with diminished executive functioning in children and adults; however, there is a relative paucity of study of executive function in adolescents exposed to CM. Yet, executive dysfunction in adolescence may have important adverse consequences including increased vulnerability to risky behaviors and impaired(More)
OBJECTIVE Previous study supports the presence of reduced volume and elevated response to emotional stimuli in amygdala in adolescents with bipolar disorder (BD). In the present study, structural and functional magnetic resonance imaging scans were obtained during the same neuroimaging session to examine amygdala structure-function relations in adolescents(More)
The olfactocentric paralimbic cortex plays a critical role in the regulation of emotional and neurovegetative functions that are disrupted in core features of bipolar disorder. Adolescence is thought to be a critical period in both the maturation of the olfactocentric paralimbic cortex and in the emergence of bipolar disorder pathology. Together, these(More)
Hippocampus volume decreases and verbal memory deficits have been reported in bipolar disorder (BD) as independent observations. We investigated potential associations between these deficits in subjects with BD. Hippocampus volumes were measured on magnetic resonance images of 31 subjects with BD and 32 healthy comparison (HC) subjects. The California(More)
BACKGROUND Insight into the neural mechanisms underlying the shared and disparate features of schizophrenia (SZ) and bipolar disorder (BD) is limited. The amygdala and prefrontal cortex (PFC) appear to have crucial roles in SZ and BD, yet abnormalities appear to manifest differently in the 2 disorders. METHODS Eighteen participants with SZ, 18(More)
BACKGROUND Convergent evidence suggests dysfunction within the prefrontal cortex (PFC) and amygdala, important components of a neural system that subserves emotional processing, in individuals with major depressive disorder (MDD). Abnormalities in this system in the left hemisphere and during processing of negative emotional stimuli are especially(More)