Learn More
Blueberry (Vaccinium spp.) is an important small fruit crop rich in antioxidants. However, tissue-specific transcriptome and genomic data in public databases are not sufficient for an understanding of the molecular mechanisms associated with antioxidants, especially the biosynthesis of anthocyanins. Here, we obtained more than 64 million sequencing reads(More)
BACKGROUND Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of(More)
Leymus chinensis (Trin.) Tzvel. is a perennial rhizome grass of the Poaceae (also called Gramineae) family, which adapts well to drought, saline and alkaline conditions. However, little is known about the stress tolerance of L. chinensis at the molecular level. microRNAs (miRNAs) are known to play critical roles in nutrient homeostasis, developmental(More)
Aging during storage negatively affects rice seed viability and nutrition quality. Lipid degradation caused by phospholipase D (PLD) activity is known to be responsible for seed deterioration in Arabidopsis, but the mechanisms of this process in monocotyledonous plant rice remain unclear. In this study, we carried out lipid profiling analysis for rice(More)
Camelina (Camelina sativa L.) is well known for its high unsaturated fatty acid content and great resistance to environmental stress. However, little is known about the molecular mechanisms of unsaturated fatty acid biosynthesis in this annual oilseed crop. To gain greater insight into this mechanism, the transcriptome profiles of seeds at different(More)
Phosphatidylinositol-specific phospholipase C (PI-PLC) hydrolyses phosphatidylinositol-4,5-bisphosphate to produce diacylglycerol and inositol 1,4,5-trisphosphate. It plays an important role in plant development and abiotic stress responses. However, systematic analysis and expression profiling of the phospholipase C (PLC) gene family in soybean have not(More)
In animal cells, phospholipase C (PLC) isoforms predominantly hydrolyze phosphatidylinositol-4,5-biphosphates [PtdIns(4,5)P2 ] into the second messengers diacylglycerol (DAG) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3 ] to regulate diverse biological processes. By contrast, the molecular mechanisms and physiological significance of PLC signaling in(More)
To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were(More)
The potential of oleosins to act as carriers for recombinant foreign proteins in plant cells has been established. Using the oleosin fusion technology, the protein can be targeted to oil bodies in oilseeds by fusing it to the N- or C-terminus of oleosin. In this study, aFGF was expressed in Arabidopsis thaliana seeds via oleosin fusion technology. A(More)
Previously, it was reported that miR396s interact with growth-regulating factors (GRFs) to modulate plant growth, development, and stress resistance. In soybean, 11 gma-miR396 precursors (Pre-miR396a-k) were found, and 24 GmGRFs were predicted as targets of seven mature gma-miR396s (gma-miR396a/b/c/e/h/i/k). To explore the roles of the miR396-GRF module in(More)