Fausto Gallucci

Martin van Sint Annaland3
Ekain Fernandez2
Jose Luis Viviente2
Jose Angel Sanchez-Garcia1
3Martin van Sint Annaland
2Ekain Fernandez
2Jose Luis Viviente
1Jose Angel Sanchez-Garcia
Learn More
The influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM), and the results indicate an increase of the grain size from(More)
In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm³/h of ultra-pure H₂ was designed, built and operated over 900 h of continuous work. Firstly, the(More)
This paper reports the findings of a FP7 project (DEMCAMER) that developed materials (catalysts and membranes) and new processes for four industrially relevant reaction processes. In this project, active, stable, and selective catalysts were developed for the reaction systems of interest and their production scaled up to kg scale (TRL5 (TRL: Technology(More)
For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel(More)
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give(More)
  • 1