Fausto Gallucci

Learn More
The reactor performance of two novel fluidized bed membrane reactor configurations for hydrogen production with integrated CO 2 capture by autothermal reforming of methane (experimentally investigated in Part 1) have been compared using a phenomenological reactor model over a wide range of operating conditions (temperature, pressure, H 2 O/CH 4 ratio and(More)
In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm³/h of ultra-pure H₂ was designed, built and operated over 900 h of continuous work. Firstly, the(More)
The influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM), and the results indicate an increase of the grain size from(More)
The majority of studies have advocated that diversity of marine nematodes increases with increasing sediment grain size, although the opposite trend has also been suggested. The controversy is partially caused by not taking into account the effect of density on patterns of diversity and by analyzing datasets from different environments. The present study(More)
This paper reports the findings of a FP7 project (DEMCAMER) that developed materials (catalysts and membranes) and new processes for four industrially relevant reaction processes. In this project, active, stable, and selective catalysts were developed for the reaction systems of interest and their production scaled up to kg scale (TRL5 (TRL: Technology(More)
For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel(More)
This paper reports the findings of a FP7/FCH JU project (ReforCELL) that developed materials (catalysts and membranes) and an advance autothermal membrane reformer for a micro Combined Heat and Power (CHP) system of 5 kWel based on a polymer electrolyte membrane fuel cell (PEMFC). In this project, an active, stable and selective catalyst was developed for(More)
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give(More)
Dense self-supported Pd-alloy membranes are used to selectively separate hydrogen and hydrogen isotopes. In particular, deuterium (D) and tritium (T) are currently identified as the main elements for the sustainability of the nuclear fusion reaction aimed at carbon free power generation. In the fusion nuclear reactors, a breeding blanket produces the(More)