Fausto Acernese

Learn More
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the(More)
In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large(More)
A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of(More)
Independent component analysis (ICA) is used to analyze the seismic signals produced by explosions of the Stromboli volcano. It has been experimentally proved that it is possible to extract the most significant components from seismometer recorders. In particular, the signal, eventually thought as generated by the source, is corresponding to the higher(More)
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter(More)
(Affiliations can be found after the references in the electronic version) ABSTRACT Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and(More)
We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for low-mass compact binary coalescence (CBC) searches during LIGO's sixth science run and Virgo's second and third science runs. We present strain noise power spectral densities (PSDs) which are representative of the typical performance achieved by the detectors in(More)
Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation(More)
We present results from a search for gravitational-wave bursts in the data collected by the LIGO data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration 1 s over the frequency band 64–5000 Hz, 5 without other assumptions on(More)
Abadie et al. ABSTRACT We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper(More)