Faustin Laurentiu Roman

  • Citations Per Year
Learn More
Two density functional theories, the fundamental measures theory of Rosenfeld [Phys. Rev. Lett. 63, 980 (1989)] and a subsequent approximation by Tarazona [Phys. Rev. Lett. 84, 694 (2000)] are applied to the study of the hard-sphere fluid in two situations: the cylindrical pore and the spherical cavity. The results are compared with those obtained with(More)
We present a density functional theory for inhomogeneous fluids at constant external pressure. The theory is formulated for a volume-dependent density, n(r,V), defined as the conjugate variable of a generalized external potential, nu(r,V), that conveys the information on the pressure. An exact expression for the isothermal-isobaric free-energy density(More)
generate very wide bandwidth waveforms directly and efficiently. With chaos control, we can produce a vast array of waveforms that are ideal for spread-spectrum communications and for highly accurate ranging. We believe a system designed around a chaotic source can perform comparably to conventional systems while requiring far fewer components. The idea of(More)
An analysis of the elastic scattering of deuterons on 6,7Li, 27Al, 54,56,58Fe, 63,65Cu, and 93Nb for energies from 3 to 60MeV has been carried out using a semi-microscopic optical potential which consists of a Coulomb term, a real double-folding (DF) potential, a phenomenological imaginary potential and a spin-orbit component. No normalization constant was(More)
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data(More)
When thermodynamic properties of a pure substance are transformed to reduced form by using both critical- and triple-point values, the corresponding experimental data along the whole liquid-vapor coexistence curve can be correlated with a very simple analytical expression that interpolates between the behavior near the triple and the critical points. The(More)
We examine the microscopic structure of a hard-sphere fluid confined to a small cylindrical pore by means of Monte Carlo simulation. In order to analyze finite-size effects, the simulations are carried out in the framework of different statistical mechanics ensembles. We find that the size effects are specially relevant in the canonical ensemble where(More)
We show that a simple model consisting of a binary hard-sphere mixture in a narrow cylindrical pore can lead to strong size selectivity by considering a situation where each species of the mixture sees a different radius of the cylinder. Two mechanisms are proposed to explain the observed results depending on the radius of the cylinder: for large radii the(More)
  • 1