Learn More
A novel dendritic cell (DC)-restricted molecule, Clec9A, was identified by gene expression profiling of mouse DC subtypes. Based on sequence similarity, a human ortholog was identified. Clec9A encodes a type II membrane protein with a single extracellular C-type lectin domain. Both the mouse Clec9A and human CLEC9A were cloned and expressed, and monoclonal(More)
Three surface molecules of mouse CD8(+) dendritic cells (DCs), also found on the equivalent human DC subpopulation, were compared as targets for Ab-mediated delivery of Ags, a developing strategy for vaccination. For the production of cytotoxic T cells, DEC-205 and Clec9A, but not Clec12A, were effective targets, although only in the presence of adjuvants.(More)
Interferon-producing killer dendritic cells (IKDCs) have been described as possessing the lytic potential of NK cells and the antigen-presenting capacity of dendritic cells (DCs). In this study, we examine the lytic function and antigen-presenting capacity of mouse spleen IKDCs, including those found in DC preparations. IKDCs efficiently killed NK cell(More)
We have cloned the mouse and human C-type lectin Clec12A, expressed both, and produced mAb recognizing both. Mouse Clec12A is highly expressed on splenic CD8(+) dendritic cells (DC) and plasmacytoid DC. A proportion of CD8(-)DC also expresses lower levels of Clec12A, as do monocytes, macrophages, and B cells. Human CLEC12A, like the mouse counterpart, is(More)
Targeting antigens to dendritic cell (DC) surface receptors using antibodies has been successfully used to generate strong immune responses and is currently in clinical trials for cancer immunotherapy. Whilst cancer immunotherapy focuses on the induction of CD8(+) T-cell responses, many successful vaccines to pathogens or their toxins utilize humoral(More)
Injection of antigens coupled to antibodies against the dendritic cell (DC) surface molecule Clec9A has been shown to produce strongly enhanced antibody responses even without co-administration of adjuvants, via antigen presentation by DC on MHC class II and consequent production of follicular helper T cells. A series of mutant mice were tested to determine(More)
We have previously shown that DEC205, a surface receptor expressed at high levels on CD8+DC, is able to capture synthetic CpG oligonucleotides (ODN) and is required for optimal responsiveness. However, even in the absence of DEC205, CD8+DC are able to respond to CpG ODN, albeit suboptimally. This suggested that additional receptors might contribute to the(More)
  • 1