Learn More
Growth, development and plants productivity are usually affected by photosynthetic pigments activity. Magnetic fields are known to induce biochemical changes and could be used as a stimulator for growth related reactions including affecting photosynthetic pigments. The impact of magnetic field strengths on chlorophyll and carotenoids were investigated in(More)
Proline accumulation is a common biochemical indicator for assessing environmental stress in plants. The objective of this study was to determine the effect of various doses of two types of magnetic fields on date palm (Phoenix dactylifera L. (cv. Khalas) seedlings based on proline accumulation. The first type involved static magnetic field (SMF) generated(More)
The main challenge for plants growing in nutrient poor, contaminated soil is biomass reduction, nutrient deficiency and presence of heavy metals. Our aim is to overcome these challenges using different microbial combinations in mining-impacted soil and focus on their physiological and biochemical impacts on a model plant system, which has multiple(More)
Sorghum is an economically important crop, a model system for gene discovery and a biofuel source. Sorghum seedlings were subjected to three microbial treatments, plant growth promoting bacteria (B), arbuscular mycorrhizal (AM) fungi mix with two Glomus species (G. aggregatum and G. etunicatum), Funelliformis mosseae and Rhizophagus irregularis (My), and B(More)
Abiotic stress factors including poor nutrient content and heavy metal contamination in soil, can limit plant growth and productivity. The main goal of our study was to evaluate element uptake, biomass and metabolic responses in maize roots growing in mining-impacted soil with the combination of arbuscular mycorrhiza (My) and plant growth promoting bacteria(More)
  • 1