Fatemeh Yavari

Learn More
Motor adaptation is tuning of motor commands to compensate the disturbances in the outside environment and/or in the sensory-motor system. In spite of various theoretical and empirical studies, mechanism by which the brain learns to adapt has not been clearly understood. Among different computational models, two lines of researches are of interest in this(More)
Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated(More)
Drug craving is a dynamic neurocognitive emotional-motivational response to a wide range of cues, from internal to external environments and from drug-related to stressful or affective events. The subjective feeling of craving, as an appetitive or compulsive state, could be considered a part of this multidimensional process, with modules in different levels(More)
Addiction is a chronic relapsing brain disease with significant economical and medical burden on the societies but with limited effectiveness in the available treatment options. Better understanding of the chemical, neuronal, regional, and network alterations of the brain due to drug abuse can ultimately lead to tailoring individualized and more effective(More)
Our ability to properly move and react in different situations is largely dependent on our perception of our limbs' position. At least three sources - vision, proprioception, and internal forward models (FMs) - seem to contribute to this perception. To the best of our knowledge, the effect of each source has not been studied individually. Specifically, role(More)
Transcranial direct current stimulation (tDCS) has been proposed as a technique for brain activity modulation. In this technique, a weak current (usually 1–2 mA) is delivered to scalp through two sponge electrodes. There are two types of tDCS stimulation: cathodal and anodal, which inhibit and facilitate neuronal activity, respectively (Hansen, 2012). tDCS(More)
Fuzzy controllers are being used in various control schemes. The aim of this study is to adjust the hemodialysis machine parameters by utilizing a fuzzy logic controller (FLC) so that patient's hemodynamic condition remains stable during hemodialysis treatment. For this purpose, a comprehensive mathematical model of the arterial pressure response during(More)
  • 1