Learn More
MOTIVATION Intrinsically disordered proteins play a crucial role in numerous regulatory processes. Their abundance and ubiquity combined with a relatively low quantity of their annotations motivate research toward the development of computational models that predict disordered regions from protein sequences. Although the prediction quality of these methods(More)
MOTIVATION Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which(More)
Due to the slightly success of protein secondary structure prediction using the various algorithmic and non-algorithmic techniques, similar techniques have been developed for predicting gamma-turns in proteins by Kaur and Raghava [2003. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci. 12,(More)
The last few decades observed an increasing interest in development and application of 1-dimensional (1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings of residue-wise structural assignments. They cover a wide-range of structural aspects including conformation of the backbone, burying depth/solvent(More)
In this paper we are proposing an approach for flexible positioning of players in Soccer Simulation in a Multi-Agent environment. We introduce Dynamic Positioning based on Voronoi Cells (DPVC) as a new method for players' positioning which uses Voronoi Diagram for distributing agents in the field. This method also uses Attraction Vectors that indicate(More)
  • 1