Learn More
In this Rapid Communication we show that the interplay between the deformation geometric-nonlinearity and distributions of external charges and dipoles lead to the renormalization of the membrane's native flexoelectric response. Our work provides a framework for a mesoscopic interpretation of flexoelectricity and if necessary, artificially "design" tailored(More)
The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can(More)
Both closed and open biological membranes noticeably undulate at physiological temperatures. These thermal fluctuations influence a broad range of biophysical phenomena, ranging from self-assembly to adhesion. In particular, the experimentally measured thermal fluctuation spectra also provide a facile route to the assessment of mechanical and certain other(More)
  • 1