Learn More
C4 grasses are among the most productive plants and most promising cellulosic biofuel feedstocks. Successful implementation of cellulosic biofuel feedstocks will depend on the improvement of critical crop characteristics and subsequent conversion technologies. The content and composition of lignin, cellulose, and hemicellulose, their biomass yields, and(More)
Xylans are the major hemicelluloses in grasses, but their effects on biomass saccharification remain unclear. In this study, we examined the 79 representative Miscanthus accessions that displayed a diverse cell wall composition and varied biomass digestibility. Correlation analysis showed that hemicelluloses level has a strong positive effect on(More)
Six MnSOD genes were isolated from five Miscanthus species. MgMnSOD1 functions in mitochondria and MgMnSOD1 seems to be the main MnSOD gene involved in stress response of M. × giganteus. Miscanthus × giganteus is a promising biomass energy crop with advantages of vigorous growth, high yield, low fertilizer and pesticide inputs. However, poor overwinter(More)
With the growing shortage of oil, coal, and other traditional fossil fuels, scientists in various fields have been looking for new fuel sources to solve the energy crisis. The genus Miscanthus is an ideal biofuel crop due to its rapid vegetative growth and its potential for high biomass yields. Plant regeneration through somatic embryogenesis is a viable(More)
The genome sizes of five Miscanthus species, including 79 accessions of M. lutarioriparius, 8 of M. floridulus, 6 of M. sacchariflorus, 7 of M. sinensis, and 4 of M. × giganteus were examined using flow cytometry. The overall average nuclear DNA content were 4.256 ± 0.6 pg/2C in M. lutarioriparius, 5.175 ± 0.3 pg/2C in M. floridulus, 3.956 ± 0.2 pg/2C in M.(More)
Miscanthus is a rhizomatous C4 grass which is considered as potential high-yielding energy crop with the low-nutrient requirements, high water-use efficiency, and capability of C mitigation. To better understand the genetic basis, an integrative analysis of the transcriptome and proteome was performed to identify important genes and pathways involved in(More)
  • 1