Farzad Towhidkhah

Learn More
We used a robotic device to test the idea that impedance control involves a process of learning or adaptation that is acquired over time and permits the voluntary control of the pattern of stiffness at the hand. The tests were conducted in statics. Subjects were trained over the course of 3 successive days to resist the effects of one of three different(More)
In this paper, an approach is proposed for fully automatic segmentation of MS lesions in fluid attenuated inversion recovery (FLAIR) Magnetic Resonance (MR) images. The proposed approach, based on a Bayesian classifier, utilizes the adaptive mixtures method (AMM) and Markov random field (MRF) model to obtain and upgrade the class conditional probability(More)
It is known that humans can modify the impedance of the musculoskeletal periphery, but the extent of this modification is uncertain. Previous studies on impedance control under static conditions indicate a limited ability to modify impedance, whereas studies of impedance control during reaching in unstable environments suggest a greater range of impedance(More)
It is very important to detect stages of multiple sclerosis (MS) lesions in order to exactly quantify involved voxels. In this paper, a novel method is proposed for automatic detection of different stages of MS lesions in the brain magnetic resonance (MR) images, in fluid attenuated inversion recovery (FLAIR) studies. In the proposed method, firstly, MS(More)
Impedance control has been suggested as the strategy employed by the central nervous system to control human postures and movements. A realization of this strategy is presented that uses a model predictive control algorithm as a higher motor controller. External disturbances are explicitly included in the model. The combination of 3 key factors-joint(More)
In a voluntary movement, the nervous system specifies not only the motor commands but also the gains associated with reaction to sensory feedback. For example, suppose that, during reaching, a perturbation tends to push the hand to the left. With practice, the brain not only learns to produce commands that predictively compensate for the perturbation but(More)
Signature verification techniques utilize many different characteristics of an individual. The selection of signature features is critical in determining the performance of a signature verification system. Even though it is critical to select a suitable set of features to be extracted, emphasis has to be put into selecting an appropriate classifier for the(More)
Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG’s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise(More)
Cerebellum has been assumed as an array of adjustable pattern generators (APGs). In recent years, electrophysiological researches have suggested the existence of modular structures in spinal cord called motor primitives. In our proposed model, each "adjustable primitive pattern generator" (APPG) module in the cerebellum is consisted of a large number of(More)