Learn More
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels.(More)
Phosphorus index (PI) is a risk-assessment tool that combines phosphorus (P) source factors and transport factors to rank the vulnerability of fields to P losses. Here we present the structure and concepts of conditional PI, developed as an educational and P-management tool adjusted for Swedish conditions. Because the significance of certain factors for P(More)
Improved understanding of temporal and spatial Phosphorus (P) discharge variations is needed for improved modelling and prioritisation of abatement strategies that take into account local conditions. This study is aimed at developing modelling of agricultural Phosphorus losses with improved spatial and temporal resolution, and to compare the accuracy of a(More)
Eutrophication, a major problem in many fresh and brackish waters, is largely caused by nonpoint-source pollution by P from agricultural soils. This lysimeter study examined the influence of P content, physical properties, and sorption characteristics in topsoil and subsoil on P leaching measured during 21 mo in 1-m-long, undisturbed soil columns of two(More)
Phosphorus (P) is one of the main nutrients controlling algal production in aquatic systems. Proper management of P in agricultural production systems can greatly enhance our ability to combat pollution of aquatic environments. To address this issue, a decision support system (DSS) consisting of the Maryland Phosphorus Index (PI), diagnosis expert system(More)
The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum(More)
The importance of subsoil features for phosphorus (P) leaching is frequently mentioned, but subsoil effects are still poorly documented. This study examined whether the subsoil of four agricultural Swedish soils (two sand and two clay) functioned as a source or sink for P leaching by measuring P leaching from intact soil columns with topsoil (1.05 m deep)(More)
Phosphorus losses from arable land need to be reduced to prevent eutrophication of surrounding waters. Owing to the high spatial variability of P losses, cost-effective countermeasures need to target parts of the catchment that are most susceptible to P losses. Field surveys identified critical source areas for overland flow and erosion amounting to only(More)
Accelerated eutrophication of surface water is often caused by high phosphorus (P) losses from agricultural fields. Long-term measurements of P concentrations from arable fields are therefore important for understanding of processes and key factors behind losses. Unfortunately, long-time series are difficult to compare due to high variablity, non-normal(More)
Transport of phosphorus (P) from agricultural fields to water bodies deteriorates water quality and causes eutrophication. To reduce P losses and optimize P use efficiency by crops, better knowledge is needed of P turnover in soil and the efficiency of best management practices (BMPs). In this review, we examined these issues using results from 10 Swedish(More)