Learn More
In the monkey the lateral bank of the anterior part of the intraparietal sulcus (area AIP), contains neurons that are involved in visually guided, object-related hand movements. It has also been shown that neurons in the caudal part of the intraparietal sulcus (area CIP) preferentially respond to 3D surface orientation. According to these results, it has(More)
In monkeys, areas in the intraparietal sulcus (IPS) play a crucial role in visuospatial information processing. Despite many human neuroimaging studies, the location of the human functional homologs of some IPS areas is still a matter of debate. The aim of the present functional magnetic resonance imaging (fMRI) study was to identify the distinct locations(More)
BACKGROUND AND PURPOSE Both action observation (AO) and action imagery have been proposed as therapeutic options for stroke rehabilitation. Currently, it is not clear to what extent their underlying neuronal mechanisms differ from each other and whether one of these therapeutic options might be preferable for this purpose. METHODS Twenty-six(More)
Gray matter (GM) changes have been described after short learning tasks that lasted for 7 days or after external stimulation that lasted for 5 days. However, the early time course of training-dependent GM changes is still unknown. We investigated whether shorter motor training sessions (four times of 30 min training) would induce GM changes. Therefore,(More)
BACKGROUND Previous studies demonstrated a posterior shift of activation toward the primary sensory cortex (S1) following stroke; however, any relationship between this posterior shift and clinical outcome measures for the affected hand function were unclear. OBJECTIVE The authors investigated the possible role of S1 in motor recovery. METHODS Assuming(More)
Primate studies have identified populations of neurons that are capable of action recognition. These "mirror neurons" show spiking activity both when the monkey executes or observes a grasping movement. These neurons are located in the ventral premotor cortex, possibly the homologue of "Broca's area" in human. This led to the speculation that action(More)
The sensitivity of MRI for local changes in the deoxyhemoglobin concentration is the basis of the blood oxygen level dependent (BOLD) effect. Time-resolved fMRI studies during visual activation show an early signal intensity (SI) decrease indicating a short lasting uncoupling of oxygen consumption and cerebral blood flow (CBF) before a SI increase due to(More)
Functional MRI is based on the vascular response due to neuronal activation. The underlying mechanism of fMRI is the blood oxygenation level-dependent (BOLD) effect-a complex interplay between changes in the cerebral metabolisation rate of oxygen (CMRO2), neurovascular coupling, and the resulting hemodynamic response. An intact neurovascular coupling is(More)
We used two complementary methods to investigate cortical reorganization in chronic stroke patients during treatment with a defined motor rehabilitation program. BOLD ("blood oxygenation level dependent") sensitive functional magnetic resonance imaging (fMRI) and intracortical inhibition (ICI) and facilitation (ICF) measured with transcranial magnetic(More)
Functional magnetic resonance imaging (fMRI) was used to investigate how focal cortical inhibition affects the blood oxygen level-dependent (BOLD) signal. Phasic low force pinch grip reduces excitability of the ipsilateral primary motor cortex. This task was used to study BOLD signal changes during inhibition. Six right-handed normal volunteers participated(More)