Farook Adam

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
In the title compound, C24H20N2, the dihedral angles between the pyrazole ring and the pendant phenyl, toluoyl and phenyl-ethenyl rings are 41.50 (8), 4.41 (8) and 31.07 (8)°, respectively. In the crystal, inversion dimers linked by a π-π stacking inter-actions between the phenyl-ethenyl rings are observed [centroid-centroid separation = 3.5857 (9) Å].
There are two mol-ecules in the asymmetric unit of the title compound, C9H10N2OS. In one, the dihedral angle between the aromatic ring and the carbamo-thioyl group is 52.31 (7)° and in the other it is 36.16 (6)°. Each mol-ecule features an intra-molecular N-H⋯O hydrogen bond, which generates an S(6) ring and the O and S atoms have an anti disposition. In(More)
In the title compound, C15H15N3OS, there is an intra-molecular N-H⋯O hydrogen bond and an intra-molecular C-H⋯S hydrogen bond involving the C=O and C=S bonds which lie on opposite sides of the mol-ecule. The mol-ecule is non-planar with the benzene and pyridine rings being inclined to one another by 26.86 (9)°. In the crystal, mol-ecules are linked by pairs(More)
The title compound, C20H20N2O, was studied as a part of our work on pyrazoline derivatives. It represents a trans-isomer. The central pyrazoline ring adopts an envelope conformation with the asymmetric C atom having the largest deviation of 0.107 (1) Å from the mean plane. It forms dihedral angles of 6.2 (1) and 86.4 (1)° with the adjacent p-tolyl and(More)
In the title compound, C16H17N3OS, a benzoyl thio-urea derivative, the planes of the pyridine and benzene rings are inclined to one another by 66.54 (9)°. There is an intra-molecular N-H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, mol-ecules are linked via pairs of N-H⋯N hydrogen bonds, forming inversion dimers, which are reinforced(More)
The title compound, C19H21N3O, comprises a central pyrazole ring which is N-connected to an aldehyde group and C-connected twice to substituted benzene rings. The pyrazole ring is twisted on the C-C single bond, and the least-squares plane through this ring forms dihedral angles of 82.44 (5) and 4.52 (5)° with the (di-methyl-amino)-benzene and p-tolyl(More)
In the title compound, C18H18N2O2, the pyrazole ring has a twisted conformation on the CH-CH2 bond. The tolyl ring and the 4-meth-oxy-phenyl ring are inclined to the mean plane of the pyrazole ring by 4.40 (9) and 86.22 (9)°, respectively, while the two aromatic rings are inclined to one another by 88.75 (9)°. In the crystal, mol-ecules are linked via(More)
In the title compound, C15H15N3OS, the dihedral angle between the planes of the benzene and pyridine rings is 26.86 (9)°. Intra-molecular N-H⋯O and C-H⋯S hydrogen bonds both generate S(6) rings. The C=O and C=S bonds lie to opposite sides of the mol-ecule. In the crystal, inversion dimers linked by pairs of N-H⋯S hydrogen bonds generate R 2 (2)(8) loops.
The mol-ecule of the title Schiff base compound, C14H14N2O2, displays an E conformation with respect the imine C=N double bond. The mol-ecule is approximately planar, with the dihedral angle formed by the planes of the pyridine and benzene rings being 5.72 (6)°. There is an intra-molecular hydrogen bond involving the phenolic H and imine N atoms.
Two-dimensional gas chromatography is a recent technology which is particularly efficient for detailed molecular analysis. However, due to the novelty of the method and the lack of automated analysis tools, quantitative data processing is often performed manually. Hence, results are strongly user-dependent, time consuming and, consequently, relatively(More)