Learn More
Sarcomere maintenance, the continual process of replacement of contractile proteins of the myofilament lattice with newly synthesized proteins, in fully differentiated contractile cells is not well understood. Adenoviral-mediated gene transfer of epitope-tagged tropomyosin (Tm) and troponin I (TnI) into adult cardiac myocytes in vitro along with confocal(More)
Defective cardiac muscle relaxation plays a causal role in heart failure. Shown here is the new in vivo application of parvalbumin, a calcium-binding protein that facilitates ultrafast relaxation of specialized skeletal muscles. Parvalbumin is not naturally expressed in the heart. We show that parvalbumin gene transfer to the heart in vivo produces levels(More)
Cardiac myosin heavy chain (MHC) isoforms are known to play a key role in defining the dynamic contractile behavior of the heart during development. It remains unclear, however, whether cardiac MHC isoforms influence other important features of cardiac contractility, including the Ca sensitivity of isometric tension development. To address this question,(More)
Cardiac myosin heavy chain (MHC) isoforms are known to play a key role in defining the dynamic contractile behavior of the heart during development. It remains unclear, however, whether cardiac MHC isoforms influence other important features of cardiac contractility, including the Ca2+ sensitivity of isometric tension development. To address this question,(More)
Familial hypertrophic cardiomyopathy is a clinically and genetically diverse autosomal dominant disorder characterized by ventricular hypertrophy and myocyte disarray in the absence of known hypertrophic stimuli. It has been linked to many cardiac contractile proteins, including four point mutations in alpha-tropomyosin (Tm). Here we use adenoviral-mediated(More)
Nemaline myopathy (NM) is a rare autosomal dominant skeletal muscle myopathy characterized by severe muscle weakness and the subsequent appearance of nemaline rods within the muscle fibers. Recently, a missense mutation inTPM3, which encodes the slow skeletal alpha-tropomyosin (alphaTm), was linked to NM in a large kindred with an autosomal-dominant,(More)
Troponin I is the putative molecular switch for Ca(2+)-activated contraction within the myofilament of striated muscles. To gain insight into functional troponin I domain(s) in the context of the intact myofilament, adenovirus-mediated gene transfer was used to replace endogenous cardiac troponin I within the myofilaments of adult cardiac myocytes with the(More)
The direct effects of expressing hypertrophic cardiomyopathy-associated (HCM-associated) mutant troponin T (TnT) proteins on the force generation of single adult cardiac myocytes have not been established. Replication-defective recombinant adenovirus vectors were generated for gene transfer of HCM-associated I79N and R92Q mutant cardiac TnT cDNAs into fully(More)
The goal of this study was to investigate isoform-specific functional domains of the inhibitory troponin subunit, troponin I (TnI), as it functions within the intact myofilaments of adult cardiac myocytes. Adenovirus-mediated gene transfer was used to deliver and express a TnI chimera composed of the amino terminus of cardiac TnI (cTnI) and the carboxy(More)