Learn More
Existing methods for surface matching are limited by the tradeoff between precision and computational efficiency. Here, we present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface and improves it by using spectral correspondence as a regularization. This algorithm has the speed of(More)
The lack of reliable techniques to follow up scoliotic deformity from the external asymmetry of the trunk leads to a general use of X-rays and indices of spinal deformity. Young adolescents with idiopathic scoliosis need intensive follow-ups for many years and, consequently, they are repeatedly exposed to ionising radiation, which is hazardous to their(More)
The main objective of this study was to develop a 3-D X-ray reconstruction system of the spine and rib cage for an accurate 3-D clinical assessment of spinal deformities. The system currently used at Sainte-Justine Hospital in Montreal is based on an implicit calibration technique based on a direct linear transform (DLT), using a sufficiently large rigid(More)
This study aimed to estimate the reliability of 3-D trunk surface measurements for the characterization of external asymmetry associated with scoliosis. Repeated trunk surface acquisitions using the Inspeck system (Inspeck Inc., Montreal, Canada), with two different postures A (anatomical position) and B (''clavicle'' position), were obtained from patients(More)
This paper presents an approach based on graph cuts initially used for motion segmentation that is being applied to the non-rigid registration problem. The main contribution of our method is the formulation of landmarks in the graph cut minimization framework. In the graph cut method, we add a penalty cost based on landmarks to the data energy. In the(More)
This paper presents a new framework for capturing large and complex deformations in image registration and atlas construction. This challenging and recurrent problem in computer vision and medical imaging currently relies on iterative and local approaches, which are prone to local minima and, therefore, limit present methods to relatively small(More)
This paper presents a novel self-calibration method of an X-ray scene applied for the 3-D reconstruction of the scoliotic spine. Current calibration techniques either use a cumbersome calibration apparatus or depend on manually identified landmarks to determine the geometric configuration, thus limiting routine clinical evaluation. The proposed approach(More)
Cardiac fibers, as well as their local arrangement in laminar sheets, have a complex spatial variation of their orientation that has an important role in mechanical and electrical cardiac functions. In this paper, a statistical atlas of this cardiac fiber architecture is built for the first time using human datasets. This atlas provides an average(More)
This paper introduces a method to analyze the variability of the spine shape and of the spine shape deformations using articulated shape models. The spine shape was expressed as a vector of relative poses between local coordinate systems of neighboring vertebrae. Spine shape deformations were then modeled by a vector of rigid transformations that transforms(More)
Brain matching is an important problem in neuroimaging studies. Current surface-based methods for cortex matching and atlasing, although quite accurate, can require long computation times. Here we propose an approach based on spectral correspondence, where spectra of graphs derived from the surface model meshes are matched. Cerebral cortex matching problems(More)