Fariborz Abbasi

Learn More
Because of field-scale heterogeneity in soil hydraulic and solute transport properties, relatively large-scale experiments are now increasingly believed to be critical to better understand and predict the movement of water and dissolved solutes under field conditions. In this study, five field experiments were conducted on short blocked-end furrows to(More)
For estimating infiltration properties of surface irrigation, some ‘quick’ and easy methods have been developed. The main objective of this study was to evaluate different ‘quick’ methods and to compare the obtained results with two new methods proposed based on the Shepard one-point approach. For this purpose, data sets measured in six borders and five(More)
Increasing water and fertilizer productivity stands as a relevant challenge for sustainable agriculture. Alternate furrow irrigation and surface fertigation have long been identified as water and fertilizer conserving techniques in agricultural lands. The objective of this study was to simulate water flow and fertilizer transport in the soil surface and in(More)
Field-scale solute transport experiments are not easily implemented because of the overwhelming problems of soil heterogeneity and variability in subsurface hydraulic and solute transport properties. In this paper, the results of four field-scale furrow irrigation experiments designed to investigate the effect of flow depth and solute application time on(More)
Water scarcity and the high consumption of water resources in agriculture have strengthened the need to manage and optimize irrigation systems. Among surface irrigation systems, furrow irrigation with cutback is commonly used because of its potentially higher irrigation efficiency, lower costs and relative simplicity. The performance of this system is(More)
A furrow irrigation model is developed based on the Slow-change/slow-flow routing equation, which is an approximate reduced form of the Saint-Venant equations to a single equation with a single variable, the upstream volume of water. For downstream-propagating disturbances it can be shown that the only approximation is that the rate of change of upstream(More)
  • 1