Fariba Fahroo

Learn More
Under appropriate conditions, the dynamics of a control system governed by ordinary differential equations can be formulated in several ways: differential inclusion, control parametrization, flatness parametrization, higher-order inclusions and so on. A plethora of techniques have been proposed for each of these formulations but they are typically not(More)
Proof: The solution for the x2 component of the system with additive impulses can be written explicitly as x2 (t) = e (k+1)h02t x2 (0) 8t 2 (kh; (k + 1)h] : (31) Indeed, for this signal we have _ x2 = 02x2 on the intervals (kh; (k + 1)h], k 0; and at times kh, k 0 we have that x2 (kh) + d k = e kh02kh x2(0) + (1 0 e 0h)e 0(k01)h x2(0) = e 0(k01)h x 2 (0) =(More)