Faramarz Farahi

Learn More
Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as(More)
We present an optical imaging system based on compressive sensing (CS) along with its principal mathematical aspects. Although CS is undergoing significant advances and empowering many discussions and applications throughout various fields, this article focuses on the analysis of a single-pixel camera. This work was the core for the development of a(More)
Microstructured optical products are becoming more widespread due to advances in manufacturing. Many of these structures contain faceted surfaces with steep slopes. Adequate metrology for such surfaces is lacking. We describe an interferometric technique that combines plane wave illumination with an index matching liquid to achieve high quality, high speed(More)
In this work, sensitivity to strain and temperature of a sensor relying on modal interferometry in hollow-core photonic crystal fibers is studied. The sensing structure is simply a piece of hollow-core fiber connected in both ends to standard single mode fiber. An interference pattern that is associated to the interference of light that propagates in the(More)
Faraday rotator mirror elements have been used in a number of applications as compensators for induced birefringence in retracing paths. In interferometric systems, such as the fiber-optic Michelson interferometer, this approach proved to be useful in providing maximum fringe visibility and insensitivity to the polarization state of light injected into the(More)
A scheme for the simultaneous determination of oxygen and temperature using quantum dots and a ruthenium complex is demonstrated. The luminescent complex [Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline)]2+ is immobilized in a non-hydrolytic sol-gel matrix and used as the oxygen sensor. The temperature information is provided by the luminescent emission of(More)
The fringe patterns seen when using moiré instruments are similar to the patterns seen in traditional interferometry but differ in the spacing between consecutive fringes. In traditional interferometry, the spacing is constant and related to the wavelength of the source. In moiré fringe projection, the spacing (the effective wavelength) may not be constant(More)
A novel Mach-Zehnder interferometer based on a fiber multimode interference structure combined with a long-period fiber grating (LPG) is proposed. The multimode interference is achieved through the use of a MMF section spliced between two single-mode fibers, with a length adjusted to couple a fraction of light into the cladding modes. A LPG placed after the(More)
The potential applications of luminescent semiconductor nanocrystals to optical oxygen sensing are explored. The suitability of quantum dots to provide a reference signal in luminescence-based chemical sensors is addressed. A CdSe-ZnS nanocrystal, with an emission peak at 520 nm, is used to provide a reference signal. Measurements of oxygen concentration,(More)
The unique characteristics of speckle correlation techniques including simple setup and fast, non-contact, high resolution measurement capability offer great potential for industrial applications. Robustness is an important requirement for industrial applications, which limits the application of many common techniques such as interferometric or photographic(More)