Learn More
During the 2007 NOAA Hazardous Weather Testbed Spring Experiment, the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma produced a daily 10-member 4 km horizontal resolution ensemble forecast covering approximately three-fourths of the continental United States. Each member used the WRF-ARW core, was initialized at 2100 UTC,(More)
During the 2007 NOAA Hazardous Weather Testbed (HWT) Spring Experiment, the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma produced convection-allowing forecasts from a single deterministic 2-km model and a 10-member 4-km-resolution ensemble. In this study, the 2-km deterministic output was compared with forecasts from the(More)
Twenty-member real-time convection-allowing storm-scale ensemble forecasts with perturbations to model physics, dynamics, initial conditions (IC), and lateral boundary conditions (LBC) during the NOAA Hazardous Weather Testbed Spring Experiment provide a unique opportunity to study the relative impact of different sources of perturbation on(More)
Using a nonhydrostatic numerical model with horizontal grid spacing of 24 km and nested grids of 6-and 3-km spacing, the authors employ the scaled lagged average forecasting (SLAF) technique, developed originally for global and synoptic-scale prediction, to generate ensemble forecasts of a tornadic thunderstorm complex that occurred in north-central Texas(More)
In Part I, the authors used a full physics, nonhydrostatic numerical model with horizontal grid spacing of 24 km and nested grids of 6-and 3-km spacing to generate the ensemble forecasts of an observed tornadic thunderstorm complex. The principal goal was to quantify the value added by fine grid spacing, as well as the assimilation of Doppler radar data, in(More)
The impacts of assimilating radar data and other mesoscale observations in real-time, convection-allowing model forecasts were evaluated during the spring seasons of 2008 and 2009 as part of the Hazardous Weather Test Bed Spring Experiment activities. In tests of a prototype continental U.S.-scale forecast system, focusing primarily on regions with active(More)
An experiment has been designed to evaluate and compare precipitation forecasts from a 5-member, 4-km grid-spacing (ENS4) and a 15-member, 20-km grid-spacing (ENS20) Weather Research and Forecasting (WRF) model ensemble, which cover a similar domain over the central United States. The ensemble forecasts are initialized at 2100 UTC on 23 different dates and(More)