Fanny Barbaud

Learn More
The mixing of confined liquids is a central yet challenging operation in miniaturized devices. Microfluidic mixing is usually achieved with passive mixers that are robust but poorly flexible, or active mixers that offer dynamic control but mainly rely on electrical or mechanical transducers, which increase the fragility, cost, and complexity of the device.(More)
Contamination with arsenic is a recurring problem in both industrialized and developing countries. Drinking water supplies for large populations can have concentrations much higher than the permissible levels (for most European countries and the United States, 10 μg As per L; elsewhere, 50 μg As per L). Arsenic analysis requires high-end instruments, which(More)
Combining bacterial bioreporters with microfluidics systems holds great promise for in-field detection of chemical or toxicity targets. Recently we showed how Escherichia coli cells engineered to produce a variant of green fluorescent protein after contact to arsenite and arsenate can be encapsulated in agarose beads and incorporated into a microfluidic(More)
A simple and robust method to compartmentalize aqueous solutions into an array of independent microchambers is presented. The array of microchambers fabricated in poly(dimethylsiloxane) are filled with the sample solution through a microfluidic channel and then sealed with oil to isolate the microchambers from each other. A water reservoir close to the(More)
  • 1