Fanis Missirlis

Learn More
The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron(More)
Molecular oxygen is key to aerobic life but is also converted into cytotoxic byproducts referred to as reactive oxygen species (ROS). Intracellular defense systems that protect cells from ROS-induced damage include glutathione reductase (GR), thioredoxin reductase (TrxR), superoxide dismutase (Sod), and catalase (Cat). Sod and Cat constitute an evolutionary(More)
Although the neurophysiological correlates of sleep have been thoroughly described, genetic mechanisms that control sleep architecture, long surmised from ethological studies, family histories and clinical observations, have only been investigated during the past decade. Key contributions to the molecular understanding of sleep have come from studies in(More)
Cellular and organismal iron storage depends on the function of the ferritin protein complex in insects and mammals alike. In the central nervous system of insects, the distribution and relevance of ferritin remain unclear, though ferritin has been implicated in Drosophila models of Alzheimers' and Parkinsons' disease and in Aluminum-induced(More)
Iron is required for organismal growth. Therefore, limiting iron availability may be a key part of the host's innate immune response to various pathogens, for example, in Drosophila infected with Zygomycetes. One way the host can transiently reduce iron bioavailability is by ferritin overexpression. To study the effects of neuronal-specific ferritin(More)
Despite the prominence of iron–sulfur cluster (ISC) proteins in bioenergetics, intermediary metabolism, and redox regulation of cellular, mitochondrial, and nuclear processes, these proteins have been given scarce attention in Drosophila. Moreover, biosynthesis and delivery of ISCs to target proteins requires a highly regulated molecular network that spans(More)
Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins(More)
Respiratory electron transport in mitochondria is coupled to ATP synthesis while generating mutagenic oxygen free radicals. Mitochondrial DNA mutation then accumulates with age, and may set a limit to the lifespan of individual, multicellular organisms. Why is this mutation not inherited? Here we demonstrate that female gametes-oocytes-have unusually small(More)
Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1), iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes(More)
Mutations in PLA2G6 have been proposed to be the cause of neurodegeneration with brain iron accumulation type 2. The present study aimed to clarify the mechanism underlying brain iron accumulation during the deficiency of calcium-independent phospholipase A2 beta (iPLA2β), which is encoded by the PLA2G6 gene. Perl's staining with diaminobenzidine(More)